
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.



USB-IDS-1: a Public Multilayer Dataset of Labeled
Network Flows for IDS Evaluation

Marta Catillo, Andrea Del Vecchio, Luciano Ocone, Antonio Pecchia, Umberto Villano
Dipartimento di Ingegneria

Università degli Studi del Sannio
Benevento, Italy

{marta.catillo, andrea.delvecchio, luciano.ocone, antonio.pecchia, villano}@unisannio.it

Abstract—The scarceness of real-life data derived from op-
erational enterprise networks is a critical problem for the
security research community. Therefore, public labeled datasets
are necessary for evaluating anomaly-based Intrusion Detection
Systems. In recent years, many public intrusion detection datasets
have spread; however, they may lack relevant details concerning
the victim applications. This paper describes USB-IDS-1, a novel
public intrusion detection dataset developed at the University of
Sannio at Benevento, Italy. It contains DoS attacks and considers
both network traffic and application-level facets, such as server-
side performance, configuration and defense modules of the
victim server. The paper describes the collection environment,
provides key insights into attack traffic and demonstrates the
impact of the attacks adopted against the server in hand.

Index Terms—Denial of Service, network flows, security, de-
fense, web server

I. INTRODUCTION

The increasing availability of public intrusion detection
datasets is fostering measurement-driven studies by a wide
community of academics and practitioners. Public datasets,
such as KDD-CUP’99 [1], UNSW-NB15 [2], NDSec-1 2016
[3], CICIDS2017 [4] and many more –interested readers
are referred to [5] for a survey– have become common
benchmarks for evaluating novel Intrusion Detection System
(IDS) techniques. For example, with the rapid growth of deep
learning frameworks, many attack detectors have spread in the
literature [6]; noteworthy, some of these detectors achieve very
encouraging results in terms of detection rate, which is close to
100% on public datasets. We claim that the contributions that
leverage public datasets for IDS research “blindly” trust and
reuse existing data by overlooking the representativeness of
the network traffic therein and its cybersecurity implications,
i.e., in terms of the real impact on service continuity and
performance of operations of the victim applications.

The way existing datasets are thought, collected and used
should be significanlty changed. In a previous work [7] we
demonstrated that Denial of Service (DoS) attacks from the
widely-used CICIDS2017 dataset, although somewhat relevant
at network-level –due to the straightforward abusive consump-
tion of network bandwidth– are negligible at application-level,
i.e., they do not significantly impact operations of the victim
under a properly-tuned configuration. Future datasets must be
conceived with a multilayer perspective, in order to make them
suitable for both application- and network-level analysis, and

to drive security claims on servers or IDS techiques. To this
aim, network data should be enriched by performance mea-
surements of the victim under attacks to make it clear whether
abusive consumption of network bandwidth affected or not
the victim at the time the dataset was collected. Moreover, it
should be stated the configuration of the victim server, which
pertains both to capacity and multithreading capability of the
server, and –even more important– to any potential defense
mechanism enabled at the time the attacks were conducted.
Surprisingly, none of the major existing datasets addresses
threats and bias induced by commodity defense modules that
can be found in many real-life server installations.

This paper describes a novel public intrusion dataset de-
veloped at the University of Sannio at Benevento (USB),
Italy, hence named USB-IDS-1. It is a concrete example
of multilayer dataset encompassing both network traffic
and application-level facets, such as server-side performance,
configuration and defenses, which is a first step towards
overcoming the limitations of existing datasets. The dataset
is instantiated in the context of DoS protocol exploit attacks
against a web server [8]. All the attacks of the dataset are
proven to be effective against the server in hand; attacks are
executed in face of different defense modules.

We release the data in the form of comma-separated values
(csv) files. They consist of labeled network flows, i.e.,
large collections of fixed-length records (84 values per record,
including the label) that summarize bi-directional network
traffic features between pairs of endpoints, such as number
and length of packets, flag counts, min, max, mean, and
standard deviations of many attributes. Flows are obtained
by running CICFlowMeter1 on the top of the raw network
packets collected in our testbed during the attacks. Overall,
the files are ready-to-use and specially crafted for prospective
users aiming to apply modern machine learning techniques.

The paper is organized as follows. Section II discusses
related work in the area and key novelties of USB-IDS-1.
Section III describes the experimental testbed, while Section
IV summarizes attack types and defense modules used to elicit
the network traffic. Section V provides information on the
dataset and descriptive statistics on the traffic and performance
measurements. Section VI concludes the work.

1https://github.com/ahlashkari/CICFlowMeter



II. RELATED WORK

Nowadays most of the intrusion detection techniques pro-
posed in the literature are tuned and tested by means of public
intrusion datasets. These are extensively used by researchers
and practitioners, as the data they contain are easy to find
and available in different formats. For example, they might be
accessible in a raw format, such as pcap packet data files, or
in more “refined” formats, such as network flows organized
in comma-separated values files –specially suited to apply
modern machine learning techniques– or both. Although every
single dataset has peculiar characteristics, all of them have
usability as a key feature. This makes the evaluation of any
detection algorithm straightforward, and justifies the massive
use of public security datasets in machine learning research.

Over the years many public security datasets have spread.
Some of these have gained strong popularity in the literature,
as KDD-CUP’99 [1]. This can be regarded as the “pioneer”
dataset for machine-learning-based intrusion detection. This
dataset was collected in 1999 and used as intrusion detection
benchmark for the Third International Knowledge Discovery
and Data Mining Tools Competition. It includes two weeks of
attacks-free instances and five weeks of attack instances that
make it suitable for anomaly detection. Numerous intrusion
detection techniques have been tested using the KDD-CUP’99
dataset over the last few decades [9], [10] and the number of
published studies shows that it has been the de facto dataset
for this research area. It is worth pointing out that, although
KDD-CUP’99 it still largely used [11], [12] and considered a
landmark in the intrusion detection field, it has many known
drawbacks [13], [14]. Furthermore, after about two decades, it
is hardly ever a perfect representative of traffic on present-
day networks. This is also true for the more recent NSL-
KDD2 [15], a version of KDD-CUP’99 dataset with duplicates
removed and reduced in size.

In recent years, studies that look at security datasets with
more critical thinking are spreading. For example, in [16] the
Authors analyze the reliability of KDD-CUP’99 by identifying
some statistical flaws that might introduce bias when training
intrusion detection models. Among the recent public intrusion
datasets, the one that gained the greatest popularity in the
literature is certainly CICIDS2017 [4]. It was released by the
Canadian Institute for Cybersecurity (CIC) in 2017 and it is
publicly available for researchers. Its Authors implemented a
testbed framework in order to generate benign and attack data
systematically using different profiles. The rapid diffusion of
CICIDS2017 is also due to its structure and organization. The
dataset offers both ready-to-use labeled flows, for those who
want to apply machine learning techniques, and raw pcap
files. In addition, its Authors provide CICFlowMeter [17],
which allows to produce network flows from raw pcap files.
Another recent public intrusion detection dataset is UNSW-
NB15 [2]. It was created by means of the IXIA PerfectStorm
tool3 in the Cyber Range Lab of the Australian Centre for

2https://www.unb.ca/cic/datasets/nsl.html
3https://www.ixiacom.com/products/perfectstorm

Cyber Security (ACCS) and contains both real modern normal
activities and synthetic contemporary attack behaviors. The
dataset is accessible in comma-separated values file format
and in pcap raw format. Since the aforementioned datasets
are generated in a synthetic environment, they might fail
to represent real-life network behaviors. The Authors of the
UGR’16 dataset [18], proposed by the University of Granada,
attempt to overcome this limitation. In particular, their dataset
is a more “pragmatic” attempt to collect netflow traces repre-
senting four months of network traffic from an Internet Service
Provider (ISP). UGR’16 includes unidirectional flows, which
identify both benign traffic and attacks. Other known public
intrusion datasets are NDSec-2016 [19], MILCOM2016 [20]
and TRAbID [21]. They are all available both as network
flows and as raw pcaps and contain different types of attacks.
The interested reader is referred to [5] for a complete survey
of existing literature on intrusion detection datasets.

Our contribution. The dataset we propose in this work
–different from those mentioned above– also takes into ac-
count “accessory” parameters of the experimental testbed,
such as commodity defense modules. This makes the data
collection environment more realistic, since defense modules
are typically used, if not enabled by default, in real-life server
installations. More important, all the attacks have been tested
and proven effective against the victim. This is demonstrated
by performance measurements (more on this later) carried out
with the web server. To the best of our knowledge, there are
no similar DoS datasets in the literature that take into account
both network traffic and application-level facets.

III. COLLECTION ENVIRONMENT AND PROCEDURE

The flows in our dataset have been obtained by collecting
traffic data on a network where a victim web server is
subjected to DoS attacks. As mentioned in the introduction,
traffic data are enriched with service metrics gathered during
the progression of the attacks by monitoring the victim. In the
following we present the experimental environment and the
data collection procedure.

A. Experimental Testbed

Data collection has been performed in a private network
infrastructure at the University of Sannio. The experimental
testbed consists of three Ubuntu 18.04 LTS nodes, equipped
with Intel Xeon E5-2650V2 8 cores (with multithreading) 2.60
GHz CPU and 64 GB RAM within a local area network
(LAN). Nodes are presented in Fig. 1.

The “victim” node hosts the Apache web server 2.4.29,
which was chosen because of its wide use for hosting real-
world sites and web apps. Furthermore, the Apache web server
is a typical attack target in many public intrusion datasets. The
web server supports a variety of modules –including security-
related capabilities– that can be purposely enabled/disabled by
suitable configuration of the server installation, such as we did
during the experiments with the defense modules presented in
Section IV-B.



DoS

attacker node

DoS
Tools

client node

httpperf

victim node

www
server

benign http
requests

logs

tcpdump

pcap

DoS

Fig. 1: Experimental testbed.

The “attacker” node is intended to generate DoS traffic
towards the victim, aiming to disrupt its server operations.
Attacks are performed by means of various state-of-the-art
tools presented in Section IV-A. The attacker node runs also
an instance of tcpdump, which is used to capture the traffic
between the attacker and the victim in a pcap packet data
file. It is worth noting that the pcap file obtained after a
given attack is processed to obtain the network flows.

The “client” node hosts httperf4, which is a well-
known load generator. It is used here to probe the web server
by gathering convenient service metrics that summarize its
operational status.

Experiments consist of the following steps:
1) setup: boot of tcpdump and the web server;
2) metrics collection: generation and storage of the service

metrics by means of httperf during the progression
of the attack;

3) attack: execution of a DoS attack by means of a dedi-
cated tool; the web server is now exercised with benign
HTTP requests from httperf –referred to as the load
(L) in the following– and DoS traffic;

4) experiment completion: shutdown of the attack tool,
httperf, tcpdump and web server, storage of the
pcap packet data file, service metrics and event logs
for subsequent analysis.

Noteworthy, between pairs of subsequent experiments we
clear the logs of the web server (i.e., access and error log),
stop the workload generator, attack scripts and the web server,
and reboot the nodes to enforce independent experimental
conditions. The web server is operated with the default con-
figuration –in terms of thread limits and maximum workers–
hardened by none or one of the defense modules assessed in
this study. By default configuration we mean the one available
after a typical installation of the web server (e.g., by means
of apt-get install apache2 pointing to the standard
Ubuntu repository5). This is done to avoid any potential bias
or inadvertent mitigation of the attack caused by changes to
the configuration beside the defense modules.

4https://github.com/httperf/httperf
5http://it.archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages

IV. ATTACKS AND DEFENSES

A. Attack tools

All the attacks contained in the dataset presented in this
work were carried out by means of publicly-available DoS
scripts and command line utility programs. These are widely
used by the security community and enable the execution of
different DoS attacks that vary greatly in severity. The attacks
and the related information on the corresponding tools are
listed in the following:

• Hulk: it is conceived as an HTTP flood, which can
spawn a large volume of obfuscated and unique traffic. In
particular, it generates numerous distinct requests in order
to prevent the server defenses from recognizing a pattern
and filtering the attack traffic. This makes the requests
difficult to be detected by means of signatures. The main
goal of the tool is to overwhelm a given web server by
starting a load of threads to fire off a flood of HTTP
GET requests with randomly generated header and URL
parameter values. We use one of the most popular Hulk
implementations for our experiments6.

• TCPFlood: it is another well-known DoS attack tool.
The attacker sends TCP connection requests locking the
available ports on the server and causing incapability to
accept legitimate TCP connection requests from other
hosts; therefore, it can be considered as a flooding attack.
For our experiments we used a GitHub TCPFlood script7.
It is a Python tool that allows to launch a TCPFlood
attack against the victim host in seconds.

• Slowloris: it is a tool that implements DoS attacks by
sending slow HTTP requests (slow DoS attacks) against
a victim server. This category of attacks uses low-
bandwidth approaches, which exploit a weakness in the
management of TCP fragmentation of the HTTP protocol.
We launched this attack by means of a well-known
Python attack script8. In particular, it implements a slow
header attack by sending incomplete HTTP requests (i.e.,
without ever ending the header). If the server closes a
malicious connection, this is re-established by keeping
constant the total number of open connections.

• Slowhttptest: it is a versatile tool9 that allows to launch
slow DoS application-layer attacks. The tool can prolong
HTTP connections in different ways. For our experiments
we used Slowhttptest in the “slowloris” mode, which
allows to send incomplete HTTP requests to the victim
server.

B. Defense modules

Here we take a closer look at the security modules assessed
in this study. They are designed by the Apache Software
Foundation and can be typically found in real-life installations
of the web server:

6https://github.com/grafov/hulk
7https://github.com/Leeon123/TCP-UDP-Flood
8https://github.com/gkbrk/slowloris
9https://tools.kali.org/stress-testing/slowhttptest



• Reqtimeout: the module mod_reqtimeout aims at
protecting an HTTP Server from attacks that, as
Slowloris, exploit flaws and vulnerabilities of HTTP
and TCP protocols related to retransmission timeout and
requests transmission data rate. In particular, this module
allows to specify –according to the environment and
domain where the web server is deployed– timeouts and
minimum data rates, which need to be meet in order to
keep a connection open. If a connection appears to be too
slow or sends only few data per request, the server will
immediately close the connection.

• Evasive: the module mod_evasive, instead, is de-
signed to protect a server from those attacks, which try
to make a server unavailable by consuming its resources
through a huge amount of requests. Among these attacks
we can mention DoS Hulk attacks. This module monitors
the incoming requests looking for suspicious IPs and
related activities, such as multiple requests for the same
pages in a short amount of time or multiple requests per
second. If one of the aforementioned events is spotted,
the server responds with 403 error code and the IP is
blacklisted for a certain amount of time.

• Security2: the module mod_security2 is a defense
module which acts as a sort of intrusion detection and
prevention system (IDPS). Therefore, it is able to identify
and respond to a wide variety of attacks, such as SQL
and code Injection. Just like a regular signature-based
IDPS, it relies on a set of rules, available from free and
pay-per-use repositories, related to known attack patterns.
These patterns may be used to check different sections
of an incoming request, according to the type of attack
and to the underlying protocol vulnerabilities they refer
to. For instance, a rule may refer to the content of HTTP
POST requests related to specific attacks, while another
may report the list of malevolent IPs.

The modules can be downloaded and installed through
many different package managers (e.g., apt, yum) or from
publicly accessible online repositories. We carefully tuned and
tested the correct functioning of the modules according to the
instructions from detailed tech blogs and references.

V. DATASET AND MEASUREMENTS

A. Data Organization
For each of the four DoS tools described in Section IV-A,

we run four independent experiments. The first experiment
consists in running the DoS tool against the web server with
no defense module in place; the remaining three experiments
are done by running the DoS tool after having started the web
server by enabling one defense module out of Reqtimeout,
Evasive or Security2 (modules are tested one by one, i.e., one
module per experiment). The duration of each experiment is
600 s; the web server is exercised with a client load L =
1000 reqs/s by httperf during the entire progression of the
attack. At the end of each experiment we collect the pcap
file gathered at the attacker node and service measurements
according to the procedure described in Section III-A.

TABLE I: Total, attack and benign network flows by csv file.

Name of the csv file TOTAL ATTACK BENIGN
Hulk-NoDefense 870485 870156 329
Hulk-Reqtimeout 874382 874039 343
Hulk-Evasive 1478961 770984 707977
Hulk-Security2 1461541 762070 699471
TCPFlood-NoDefense 330543 48189 282354
TCPFlood-Reqtimeout 341483 59102 282381
TCPFlood-Evasive 341493 59113 282380
TCPFlood-Security2 341089 58716 282373
Slowloris-NoDefense 2179 1787 392
Slowloris-Reqtimeout 13610 13191 419
Slowloris-Evasive 2176 1784 392
Slowloris-Security2 2181 1790 391
Slowhttptest-NoDefense 7094 6695 399
Slowhttptest-Reqtimeout 7851 7751 100
Slowhttptest-Evasive 7087 6694 393
Slowhttptest-Security2 7090 6700 390

USB-IDS-1 consists of 16 csv files providing ready-to-use
network flows; each file corresponds to a (DoS tool – defense
module) combination. As previously mentioned, network flows
are obtained through CICFlowMeter, which is applied to
the pcap files obtained after the experiments. The naming
scheme of the csv files allows to identify the collection
scenario. For example, Hulk-NoDefense.csv provides the flows
obtained by executing Hulk with no defense in place; similarly
Slowloris-Reqtimeout.csv provides the flows obtained during
the experiment where Slowloris is launched against the server
hardened with Reqtimeout.

TABLE I provides the cardinality of the files of the dataset
and the breakdown attack-benign flows. A small sample of the
dataset is made available for review purposes at a temporary
private link10. The link will be replaced with a full-fledged
institutional webpage of the dataset (providing access to all
the files) if the paper is accepted.

Use cases of USB-IDS-1. At the current stage of devel-
opment, USB-IDS-1 pertains only to attacks, and does not
even try to record benign network traffic profiles over a large
network. The benign records available in the dataset consist in
either (i) the flows between the victim and the attacker11 or (ii)
a “byproduct” of spurious traffic –intercepted by tcpdump at
the attacker node– that does not directly involve the victim.
There are several use cases of USB-IDS-1. For example,
our flows can be used to test the coverage of machine-
learning-based IDS techniques or to verify the transferability
of an IDS model; moreover, USB-IDS-1 flows can be used
to augment training data of other related datasets, such as
CICIS2017 –based on CICFlowMeter as well– because they
reflect novel collection settings accounting for the impact of
several defense mechanisms.

10https://sannio-box.unisannio.it/index.php/s/e6QF0gpIJi05kop
11In this work we follow the convention to label as (i) attack, the flows

originated by the attacker, and (ii) benign, those originated by the victim. The
same labelling approach is used by CICIDS2017.



(a) Hulk USB-IDS-1

(b) Slowloris USB-IDS-1

Fig. 2: Packet rate measured during the progression of two
USB-IDS-1 attacks in case of no and with defense.

B. Impact of the Defense
Defense modules strongly alter the network traffic under

attack and the related flows. An attempt to learn intrusion
detectors on top data obtained under no defense may lead
to partial –or even incorrect– patterns because the behavior
of a given attack depends on the specific defense in hand.
One of the key novelties of USB-IDS-1 is the availability of
data obtained under no defense and a variety of widely-used
defense modules.

Fig. 2 provides the rate of the packets (pkts) –measured
in pkts/s– captured by tcpdump at the attacker node during
the progression of Hulk and Slowloris in case of no and with
defense, respectively. On average, the rate measured for Hulk
in case of no defense (⇥-marked series in Fig. 2a) is around
4000 pkts/s higher than the rate measured in the experiment
with the Evasive module; on the other hand, Reqtimeout causes
Slowloris to emit a larger number of packets than the paired
no defense experiment, as it can be noted by the magnitude of
the spikes in Fig. 2b. It is worth noting that different packet
distributions impact the number of flows. For example, as
shown in TABLE I the number of flows of the file Hulk-
NoDefense.csv is 870485; this value increases up to 1478961
for Hulk-Evasive.csv. Similar considerations hold for other
combinations attack/defense.

We conduct a Principal Component Analysis (PCA) to
infer a visual representation of the network flows. PCA is
a dimensionality reduction technique whose objective is to
find the directions along which a set of high-dimensional
points line up best. To this aim, network flows are regarded
as “points” of a Euclidean space: we use a PCA to reduce
the dimensionality of the flows, i.e., 83 (label excluded) to 2,
for visualization purposes. Fig. 3 shows the 2D scatterplot
of the network flows –now represented by means of their
coordinates along the first two principal components (PC)– for
two attacks of USB-IDS-1. The focus is on Hulk (Fig. 3a) and

(a) Hulk (b) Slowloris

Fig. 3: PCA-based comparison of USB-IDS-1 flows with
respect to CICIDS2017 for two attacks.

(a) Hulk (b) TCPFlood

(c) Slowloris (d) Slowhttptest

Fig. 4: Throughput of the web server during the progression
of the attacks (no defense experiments).

Slowloris (Fig. 3b) because we aim to provide a comparison
with CICIDS2017, which features these two attacks as well.
It is interesting to note that USB-IDS-1 flows, shown both in
case of no and with defense (⇥- and •-marked data points,
respectively), have minor to none overlap with CICIDS2017.

C. Performance of the Victim Server
The client node continuously probes the victim by means

of httperf with a load L = 1000 reqs/s. In response to
the load, httperf generates several service metrics. We
provide here the reply rate or throughput, i.e., HTTP requests
accomplished by the web server within the time unit –
measured in reqs/s– to show the effectiveness of the attacks
available in USB-IDS-1. Fig. 4 shows the throughput of the
web server during the progression of the attacks for the no
defense experiments. In case of attack-free conditions we
expect the throughput to be steady at 1000 reqs/s; on the
contrary, it can be noted that all the attacks significantly impact
the throughput. Interestingly, the attacks cause a variety of
responses by the victim web server, which range from the
progressive absorption of victim resources for Hulk (Fig. 4a)
to periodic drops caused by TCPFlood (Fig. 4b) to the typical
“on-off” behavior of slowloris attacks (Fig. 4c and 4d), which
drop from 1000 to 0 reqs/s outright.



(a) Hulk (Evasive) (b) Slowloris (Reqtimeout)

Fig. 5: Throughput of the web server during the progression
of two example attacks in case of defense.

As for the impact of the defense on the throughput, it should
be noted that the defense modules –in spite of the alteration
of the packet rate noted in Section V-B– do not guarantee
“full” mitigation of the attacks. Fig. 5 shows two instances
available in USB-IDS-1 obtained for the pairs (Hulk, Evasive)
and (Slowloris, Reqtimeout). In the former case, the module
can only delay the throughput depletion of the server when
compared to the corresponding no defense run in Fig. 4a; in
the latter, similarly to Fig. 4c obtained for no defense, the
throughput remains close to 0 reqs/s if not for sporadic spikes.

VI. CONCLUSION

In this paper, we propose USB-IDS-1, a novel public
intrusion detection dataset. It is an example of a multilayer
perspective dataset, containing both DoS network traffic and
application-level facets. Public intrusion detection datasets are
of paramount importance to ensure valuable and productive
research activities in the network security field. The major
problem is the lack of “real-life” data and systematic metrics
for assessing and quantify the realism of any public intrusion
detection dataset.

Existing public datasets tend to not disclose any useful
service metric of the victim at the time the attacks were per-
formed. Overall, they miss the multilayer perspective, which
allows to establish whether the attacks caused just marginal
fluctuations at the network-level or “real damage” to the
victim applications. USB-IDS-1 makes a step ahead of other
common intrusion detection datasets: all the attacks are proven
to be effective against the victim. Another important outcome
obtained through our data collection is that defense modules
might not provide complete protections from DoS attacks
and –in turn– modern IDS techniques should be properly
tuned even when the server is hardened. In this respect, USB-
IDS-1 provides network flows obtained under various defense
modules, which can be used to augment third-party training
data or to refine existing IDSs. In the future we will extend the
analysis to further attacks and victims, in order to release to the
community a complete intrusion detection dataset; moreover,
we will address the problem of modeling regular operational
profiles for large networks.

REFERENCES

[1] (1999, Oct) Kdd cup data. [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html

[2] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Military Communications and Information Systems Conference.
IEEE, 2015, pp. 1–6.

[3] F. Beer and U. Buehler, “Feature selection for flow-based intrusion
detection using rough set theory,” in Proc. International Conference on
Networking, Sensing and Control. IEEE, 2017, pp. 617–624.

[4] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani., “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. International Conference on Information Systems Security and
Privacy. SciTePress, 2018, pp. 108–116.

[5] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Computer &
Security, vol. 86, pp. 147–167, 2019.

[6] H. Liu and B. Lang, “Machine learning and deep learning methods for
intrusion detection systems: A survey,” Applied Sciences, vol. 9, no. 20,
p. 4396, 2019.

[7] M. Catillo, A. Pecchia, M. Rak, and U. Villano, “A case study on the
representativeness of public DoS network traffic data for cybersecurity
research,” in Proc. International Conference on Availability, Reliability
and Security. ACM, 2020, pp. 1–10 Art. no. 6.

[8] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed
denial-of-service attack, prevention, and mitigation techniques,” Inter-
national Journal of Distributed Sensor Networks, vol. 13, no. 12, pp.
1–33, 2017.

[9] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible
evaluation of anomaly-based intrusion-detection methods,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 40, no. 5, pp. 516–524, 2010.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009,
pp. 1–6.

[11] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation
of machine learning algorithms for intrusion detection system,” in Proc.
International Symposium on Intelligent Systems and Informatics. IEEE,
2017, pp. 277–282.

[12] P. Kushwaha, H. Buckchash, and B. Raman, “Anomaly based intrusion
detection using filter based feature selection on KDD-CUP 99,” in Proc.
TENCON. IEEE, 2017, pp. 839–844.

[13] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln Laboratory,” ACM Transactions on Information and System
Security, vol. 3, no. 4, pp. 262–294, 2000.

[14] G. Kayacık and N. Zincir-Heywood, “Analysis of three intrusion de-
tection system benchmark datasets using machine learning algorithms,”
in Intelligence and Security Informatics. Springer Berlin Heidelberg,
2005, pp. 362–367.

[15] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analy-
sis of the KDD CUP 99 data set,” in Proc. Symposium on Computational
Intelligence for Security and Defense Applications. IEEE, 2009, pp.
1–6.

[16] J. V. V. Silva, M. A. Lopez, and D. M. F. Mattos, “Attackers are
not stealthy: Statistical analysis of the well-known and infamous KDD
network security dataset,” in Proc. Conference on Cloud and Internet of
Things, 2020, pp. 1–8.

[17] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of Tor traffic using time based features,” in Proc.
International Conference on Information Systems Security and Privacy,
2017, pp. 253–262.

[18] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-Teodoro,
and R. Therón, “UGR’16: A new dataset for the evaluation of
cyclostationarity-based network idss,” Computers & Security, vol. 73,
pp. 411 – 424, 2017.

[19] F. Beer, T. Hofer, D. Karimi, and U. Bhler, “A new attack composition
for network security,” in 10. DFN-Forum Kommunikationstechnologien.
Gesellschaft fr Informatik e.V., 2017, pp. 11–20.

[20] T. Bowen, A. Poylisher, C. Serban, R. Chadha, C. Jason Chiang, and
L. M. Marvel, “Enabling reproducible cyber research - Four labeled
datasets,” in Proc. Military Communications Conference. IEEE, 2016,
pp. 539–544.

[21] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Comput.
Netw., vol. 127, no. C, p. 200216, 2017.


