This is the pre-peer reviewed version of the following article: “Black-box
Load Testing to Support Auto Scaling Web Applications in the Cloud”

by M. Catillo, L. Ocone, M. Rak, U. Villano, which has been published in
final form in International Journal of Grid and Utility Computing,

and is available at http://www.inderscience.com/offer.php?id=114823,
DOI: 10.1504/1JGUC.2021.114823

Int. J. Signal and Imaging Systems Engineering, Vol. x, No. z, 201X 1

Black-box Load Testing to Support Auto Scaling
Web Applications in the Cloud

Abstract: One of the most interesting features of cloud environments is the possibility
to deploy scalable applications, which can automatically modulate the amount of leased
resources so as to adapt to load variations and to guarantee the desired level of quality
of service. As auto scaling has severe implications on execution costs, making optimal
choices is of paramount importance. This paper presents a method based on off-line
black-box load testing that allows to obtain performance indexes of a web application in
multiple configurations under realistic load. These indexes, along with available resource
cost information, can be exploited by auto-scaler tools to implement the desired scaling
policy, making a trade-off between cost and user-perceived performance.

1 Introduction

The widespread and systematic use of cloud computing
resources is currently a solid reality. In cloud
environments there is the possibility to rapidly and
automatically expand or reduce the amount of the
computing resources obtained from a provider in order
to adapt to load variations, keeping leasing costs to
a minimum. According to the NIST definition [20],
this is an essential characteristic of cloud environments,
called rapid elasticity: “Capabilities can be elastically
provisioned and released, in some cases automatically,
to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available
for provisioning often appear to be unlimited and can
be appropriated in any quantity at any time.” In
practice, elasticity makes it possible to exploit at any
time, without human intervention, the right amount of
cloud resources, so as to adapt to actual load without
performance degradation, avoiding at the same time to
incur unnecessary extra costs.

Elasticity is undoubtedly one of the reasons that have
led web application developers to migrate to the cloud.
However, the implementation of an auto-scaler able to
exploit optimally (or, at least, reasonably well) cloud
elasticity has proven to be far from simple. This is due
to a number of reasons, including;:

e the difficulty to scale the performance of web
applications. More resources should lead to higher
performance, but finding the best way to scale
performance is not a trivial task, often complicated
by the presence of non-replicable application
components;

e the characterization of the workload. Its modeling
is difficult or even impossible, making it hard
to foresee future workload changes and to apply
proactive resource scaling;

e the garden variety of cloud resources offerings and

pricing models, which add further complexity to
the choice of optimal resource acquisition.

Copyright (© 201X Inderscience Enterprises Ltd.

Informally speaking, a successful auto-scaler must
know when to scale, so as to adapt promptly or even
proactively to workload changes, and how to scale,
provisioning or deprovisioning computer resources leased
from the cloud, obtaining the desired performance
level without dangerous oscillations. Currently several
auto-scaling tools are available, albeit with limited
capabilities. Sometimes they are readily offered from
cloud service providers (e.g., AWS [8], Azure [1], Google
[2]). Moreover, even if a wide literature has been
produced on the topic, a final solution is not available
at the state of the art. Furthermore, the constant
growth of cloud offerings and pricing models and the
concrete possibility to resort to multiple clouds rise the
complexity of the problem. A short review of the auto-
scaling literature will be presented in the related work
section.

In this paper we propose a methodology based on
off-line black-box load testing that allows to obtain
performance indexes of a web application in multiple
configurations under realistic load. These indexes,
along with available resource cost information, can be
exploited by auto-scaler tools to implement the desired
scaling policy with negligible monitoring overhead,
making a trade-off between cost and user-perceived
performance. Our approach consists in benchmarking
in an almost automated way the web application
in different deployment configurations to discover its
processing capacities, making it easier to choose scaling
policies in the presence of a too high/low number
of requests. As a reference for our work we will use
a pretty simple, but real and highly diffused, web
application (a WordPress stack). We will present the
obtained performance figures, showing how and when
its performance limits are reached for a number of
alternative configurations, obtaining information that,
in conjunction with resource leasing costs, can support
scaling decisions.

This paper will go on as follows. Section 2 presents
the basics of the auto scaling problem. Section 3 deals
with related work. The paper will go on by illustrating
our methodology (Section 4) and by a case study

Copyright (©) 201X Inderscience Enterprises Ltd.

2 XX et al.

(Section 5) discussing in detail its application. Finally,
the conclusions are drawn and our future work outlined.

2 The Auto Scaling Problem

The problem of the auto scaling of web applications
involves the automatic provisioning or deprovisioning of
computing resources leased from a single or multiple
cloud providers, so that the application SLA is
satisfied under dynamically variable load and the
total resource cost is minimized. It is commonly
approached as an autonomous control problem, involving
the use of a MAPE (Monitoring, Analysis, Planning,
Execution) loop [19]. The Monitoring phase requires the
cyclic measurement of purposely-selected performance
indicators. These measurements may suggest the
necessity of a scaling action. Actual scaling decisions
are taken in the Analysis phase, taking care to avoid
oscillations due to opposite actions in a short time
interval. In the Planning phase, the actual amount of
resources to be provisioned/deprovisioned is estimated.
This involves the choice between horizontal and vertical
scaling. In a cloud context, horizontal scaling involves
the acquisition of additional VMs (scaling out) or the
release of useless VMs (scaling in). Vertical scaling,
instead, involves adding (scaling up) or subtracting
(scaling down) resources (e.g., compute cores, RAM)
to/from existing VMs. In fact, horizontal and vertical
scaling are not mutually exclusive. Sometimes it is worth
using them jointly, for example when an application
contains both replicable services and stateful ones (e.g.,
databases) that cannot be easily replicated. Once the
scaling decisions are taken, they are implemented in
Execution phase. Even this phase involves complex
decisions, especially when resorting to multiple cloud
providers, possibly with multiple data centers in different
geographical regions.

All things considered, the decision space for an auto-
scaler is decidedly huge, with an expansion trend due to
the multiplicity of cloud providers and to the growing
variety of cost plans to be considered.

3 Related Work

As mentioned in the introduction, the auto-scaling
problem has been studied extensively, from multiple
perspectives. The solutions proposed in the literature
at the state of the art are based on one (or more) of
the following scaling methods: load predictive, resource-
aware, SLA-aware, cost-aware, depending on whether
the focus is on the prediction of load peaks, on resource
provisioning policies, on meeting the SLAs signed by
application providers, or on cost reduction. Since the
work presented in this paper is essentially cost-aware, for
brevity’s sake the focus of this section will be on works
based on a cost-aware approach. The interested reader

is referred to [18], [23], [12], [11] for general and wide
surveys of auto-scaling literature.

Currently only a few contributions in the literature
follow a cost-aware approach. In [7] the authors
underline the importance of cost analysis for complex
applications. In particular, they state that a cost-
oriented study is crucial from the design phase to
the deployment and runtime phases. Hawng et al. [16]
highlight the performance/cost ratio as a key factor in
cloud productivity. The paper [27] describes a cost-aware
solution based on workload predictions to provide an
elastic service cloud. Qu et al. [22] instead propose a
cost-efficient auto-scaling system for web applications
based on the lease of Amazon EC2 spot instances. The
MELODIC framework [15] can support cost-aware auto-
scaling. It finds a good initial deployment in the cloud
and continuously optimizes it according to the variable
execution context, possibly taking into account the cost
in its utility function. It is worth pointing out that, unlike
the contributions mentioned above, our work does not
entail the development of an auto-scaling system. Our
aim in this paper is instead to propose a benchmarking
and analysis method able to provide data to support
the scaling policies used by commonly-used scalability
frameworks and tools for clouds.

Other solutions in the literature analyze cost-
awareness from different perspectives. An interesting
approach that defines an innovative, cost-aware
mechanism, is described in [17]. In particular, the
Authors introduce a mediator between application and
auto-scaler. They use a ‘forward-looking’ approach by
delaying or omitting the release of resources in order to
avoid additional charging costs if the resource will be
required in the future. This solution can interface with
any auto-scaler. A method that instead analyzes the
cost-aware scalability of applications in public clouds is
presented in [21], where the Authors introduce a model
for capturing the pricing schemes of cloud services. They
analyze the application cost depending on its used cloud
services and their billing cycles, specifying a function
for evaluating the cost efficiency of cloud applications.
Our proposal, though aimed at the reduction of cost,
similarly to the two works mentioned above, exploits
different performance indexes and cost metrics.

The methodology proposed in this paper will be
demonstrated by application to a widespread three-tier
web application, a WordPress stack. The performance
modeling of three-tier applications has been thoroughly
dealt with in [14] and previously in [26] and [28]. All the
above contributions analyze the application performance
by detailed models taking into account the hardware
resources exploited and the software components of the
application. Our proposal, instead, relies on a black-box
approach. All performance indexes are obtained solely by
interacting with the application at the client interface,
i.e., submitting http requests from purposely-crafted
clients and recording responses and their timings.

Black-box Load Testing to Support Auto Scaling Web Applications in the Cloud 3

4 Methodology

As outlined in Section 2, the problem we address here is
to support cost-based scalability policies by information
obtained by off-line profiling. The obvious objective is
to grant that the costs of the resources leased from the
cloud are adequate to the performance results obtained.
Our methodology is based on use of custom benchmarks
for the target web application. These benchmarks can
be executed off-line once and for all, and will provide
information used to identify the conditions when the
application should scale.

In the following subsections we will show how the
whole web application is modeled by a black-box
approach, load testing it and collecting information on
the messages sent /received at the server-client interface.

4.1 Application modeling

Our model relies on the basic assumption that in steady-
state conditions a web application is a state system. In
each state, it is characterized by performance indexes
which are substantially stable and predictable. Hence
our objective is to measure the performance indexes by
load testing, stressing the system and settling it in a
given operating state. The procedure has to be repeated
for all the states that correspond to meaningful working
conditions and for all system configurations, as obtained
by scaling up/down, out/in the basic deployment.

Our working hypothesis is that the application state
is determined to a large extent by the number of active
concurrent users of the application. This will be proven
to be true for the application chosen for our case study;
however, we have found that it is also true for a large
class of http-based systems [24] where all users generate
similar load on the system.

Measuring the number of concurrent users in real
operating conditions is possible, but unpractical for an
external scaling agent. As a matter of fact, there is a
direct relation between the number of concurrent users
and the request rate, which can be easily measured
externally even in the absence of any information on the
application internal structure.

Putting all together, the actual (measured) request
rate in operating conditions makes it possible to deduce
the number of concurrent users that characterizes the
state of the system. The pre-determined performance
parameters for that load state and for each possible
application configuration, along with the leasing cost of
these configurations allow to make scaling decisions, by
a reasoned choice of the system configuration to be used
next.

As far as the application quality of service delivered
(QoS) is concerned, the analysis of the performance
results characterizing the behavior in this state must
allow to find out if scaling decisions are possible or
immediately required. By “immediately required” we
mean that the system QoS is unacceptably low, and a
scaling up or out choice must be taken soon.

In practice, the event that has the highest impact on
the level of user patience (the perception end users have
from a service QoS) is the failure of the hitp requests
used for the interaction client-server. The failure of an
http request is commonly known as KOj; it corresponds
to any status code different from 2xx or 304. On the
other hand, for completed http requests (i.e., not KO),
the fundamental index is the response time (RT), which
clearly should be as low as possible.

The MAR index (Maximum Allowed Rate), defined
in [10], is an index linked to the maximum number
of failed http requests. In particular, it is the request
rate for which the application reaches %KO,,qz, a
given maximum allowed % KO value. The MAR is a
monotonically non-decreasing function of %K O, if a
higher failure ratio is allowed, the application can be feed
with higher request rates.

4.2 Load testing and analysis

Given the assumptions at the previous Subsection, the
issue discussed here is how to perform load tests, forcing
the application to settle in a given operating state.

The method we propose consists of three main phases,
sketched in figure 1: (i) Application Behavior Profiling,
(ii) Profile Benchmarking, (iii) Cost Analysis.

Application Behavior Profiling consists in
building a simplified model of the application workload,
used to feed off-line the application through stressing
tools. In this first phase we run and analyze the
application to build a set of application user profiles,
scripts that can issue suitably-timed sequences of
application invocations that model the behavior of a
typical user in a single session. Such profiles can be easily
built through web automation tools as Selenium [3], or
the Gatling recorder [4] (the one actually used in our
experiments). For example, for the small commerce site
based on the WordPress CMS software that will be used
in the following as a running example, it is possible
to identify four “typical” navigation profiles: an Editor
profile (browsing and adding comments), an Author
profile (browsing and adding posts and comments), a
ShopManager profile (browsing and adding products,
posts and comments), a Reader profile (just browsing).
Once the scripts for each profile have been built, a
workload for benchmarking purposes can be obtained by
multiple concurrent executions of one of the load profiles,
and load variability can be obtained by modulating the
number of load profiles launched per second.

In the Profile benchmarking phase, an off-
line application profiling is obtained by running the
application in the cloud under the synthetic workload
generated by the scripts produced in the previous phase.

As our aim is to reach a steady-state condition
for each state, i.e., for progressively higher numbers of
concurrent users, we exploit the load tests with closed
workload (capped number of users) provided by Gatling
[13]. In each working condition, users are injected to keep
the number of concurrent users stable. Throughout the

4 XX et al.

Application

Behavior
Profiling

Profile

Benchmarking

¢ Define user profiles
® Generate scripts

e Perform stress tests
® Parameter: rate
o Indexes: %KO, RT

e Cost/QoS trade-off
¢ Indexes: %KO,,.,, MAR
o Define scaling policy

Cost-based

Analysis

Figure 1: Scalability Benchmarking Methodology

test we record the measurements of %K O, percentage
ratio of failed requests, and of Response Time (RT).

In the last phase, Cost-based Analysis, we produce
a set of graphs that outline the trade-off among cost-
related indexes and quality of service delivered, enabling
the application administrator to define a scalability
policy with an optimal balance between costs and QoS.

5 A Case Study

In order to demonstrate the effectiveness of the proposed
approach, we applied the suggested methodology
to a simple, but very typical web application: a
WordPress-based Content Management System (CMS).
We performed the full flow described in the previous
section on this application, in order to clarify all details
of the cost analysis process.

WordPress [5] is open-source software running on top
of PHP using any web server, as Apache or NGNIX. It
exploits a MySQL data base to store the web application
data. WordPress is one of the most widely used CMS,
commonly adopted for blogs or simple e-commerce sites.
For this reason, it has been used many times in the
literature as a benchmark (see for example [9], [25]).

5.1 Application Behavior Profiling

We configured WordPress in order to host a simple e-
commerce site, where it is possible to navigate through
the products and make comments and publish articles
or new products. Accordingly, we defined four simple
application user profiles:

e Editor: a user that registers new operations,
navigates through the website and posts
comments;

e Author: a user that behaves as an Editor, but in
addition posts new articles (not only comments);

e ShopManager: a user that add products, articles
and comments on the website;

e Reader: a user that navigates through the website
without posting or commenting.

Thanks to the already mentioned Gatling recorder,
we generated a set of SCALA scripts that automate
the navigation and interaction with the website.
The automatically-generated scripts were successively
modified, in order to add parameters in any phase that
requires a user data input. Raw scripts need sample data
when adding a new comment, a new post, a new product
and/or the registration of a new user. We stored a set
of possible data inputs in a collection of JSON files, to
be selected to feed the automation tool that performs
the tests. The following code snippet shows a fragment
of one of the generated SCALA scripts used to setup an
execution.

val reader = scenario("User that reads only")
.exec(Browse.browse)
val editor = scenario("Editor registers and adds comments")
.exec(Registration.add User,
NewComment.addComment,
Browse.browse)
val author = scenario(" Author registers, adds new posts
and adds new comments")
.exec(Registration.addUser,
NewPost.addPost,
Browse.browse,
NewComment.addComment,)
val shopManager = scenario("ShopManager registers,
adds new products,
adds new posts and
adds new comments")
.exec(Registration.addUser,
Browse.browse,
NewProduct.addProduct,
NewPost.addPost,
NewComment.addComment)

Depending on the type cof CMS operation to be
performed and the type of data needed, sample input
data can be injected into the automation tool in three
ways: (i) direct, (ii) indirect and (iii) two-steps.

Direct data injection is performed directly in the
SCALA script: the Gatling automation tool has a feeder
that, correctly configured, randomly selects a JSON file
to upload. In indirect injection, the feeder accesses a
JSON file containing a Javascript code that produces the

Black-box Load Testing to Support Auto Scaling Web Applications in the Cloud 5

text to be injected as the body of an HTTP request. The
last injection type requires the use of both the techniques
illustrated above.

5.2 Profile benchmarking

The application benchmarks were executed on a private
cloud , based on the OpenStack environment and hosted
in a datacenter at the University of Sannio. Table 1
shows the VM flavor used for our tests. These are roughly
equivalent to the VM leased by AWS in Table 2, which
also reports their cost in dollars per hour (we used the
AWS prices available at https://aws.amazon.com/it/
ec2/pricing/on-demand/)

TYPE VCPU | RAM (GB) | STORAGE (GB)
ml.medium 2 4 40
ml.large 4 8 60
ml.xlarge 8 16 80

Table 1 VMs used in our experiments

TYPE AWS equivalent | AWS cost
ml.medium al.large 0.0576 $/h
ml.large al.xlarge 0.1152%/h
ml.xlarge al.2xlarge 0.2304 $/h

Table 2 Equivalent AWS VMs and costs ($ per hour)

The simplest deployment configuration (Fig. 2)
consists of four VMs: the first VM hosts our Remote
Terminal Emulator (RTE), which emulates users
that perform continuous requests to the server. The
other three VMs are devoted to host the WordPress
application, the MySQL DB and the load balancer
(based on HAProxy). This choice corresponds to a
typical WordPress configuration [6] and makes it possible
to verify easily the scalability issues. The WordPress
module can be scaled horizontally adding (or removing)
VMs that host additional WP front-ends. The DB
cannot be easily replicated, and so the simplest scaling
solution is to perform only vertical scaling (i.e., to
execute it on a more/less powerful VM flavor). Some of
our tests, not shown here for brevity’s sake, show that
the use of large or zlarge VMs for the WP front-end does
not entail performance improvements. At the same time,
the use of zlarge VMs for the DB is not beneficial for
performance. Therefore, in the discussion that follows,
we will present and discuss the results obtained with six
different configurations, made up of one to three medium
flavor WP front-ends, along with one medium or large
DB. The strings used to describe these configurations
are self explanatory (e.g., 2WPmedium_1DBmedium is the
configuration made up of two WP front-ends on medium
VMs and one DB on medium VM). In all our tests, the
load balancer is hosted on a dedicated medium flavor
VM.

As previously described, we stressed the server
starting each application user profile and collecting

\ g
Load Balancer :
i VM |

¢ WebServer N
| C—— VM.

Figure 2: WordPress deployment configuration

the main performance indexes, as shown graphically
in Fig. 3. The number of concurrent users (Cysers) is
progressively made higher and higher, paying attention
to maintain any given Clygers value for enough time
to stabilize the server behavior (applying the approach
described in [10] and [24]).

Figure 4 shows the results obtained in our tests.
Each row shows, for one of the four profiles and for the
six deployment configurations, the plots as function of
Cusers of:

e %KO, the percentage of failed replies;

e rate required, the mean request rate generated by
that number of concurrent users;

o RT-measured, the mean response time in ms;

e COV of RT, the coefficient of variation of response
times.

A first analysis of these diagrams shows that the
results obtained for the four user profiles are very similar.
In other words, the actual operations performed, whether
they involve reading or writing in the database, have
negligible influence on the performance results. It is also
possible to observe that the lowest response times are
obtained by the configurations with three WP front-
ends. The flavor of the VM used for the DB deployment,
instead, is almost uninfluential. It is worth noting that
the WordPress application shows almost constant % KO
until the rate is fairly low. For progressively higher rates,

6 XX et al.

e e . @
v e :> | “ |
Cue

Figure 3: Benchmarking schema

from a saturation point onward, %KO grows almost
linearly.

Even if the actual hitp requests generated by
each user profile are largely heterogeneous, and so
physiologically involve highly variable response times,
the diagrams of the COV of the response time show that
the actual response times are scarcely dispersed around
the mean. For high numbers of C\ s, the majority of
configurations show very low COV (around 1.5). This
is the proof that the state and performance behavior of
the system is in large part determined by the number
of concurrent users of the application, as assumed in
Section 4. Stated another way, under heavy load the
application behaves as a LDS system [24].

5.8 Cost-based Analysis

As mentioned above, we aim at introducing a cost-based
analysis method based on high-level scaling indicators
and on information obtained beforehand by load testing,
that should enable to scale optimally the application.
This solution is based on the use of the MAR (Maximum
Allowed Rate) performance indicator. As discussed in
Section 4, a fundamental requisite to avoid QoS loss is
to keep the number of KO under a very low limit value,
as KOs have great impact on user patience. Hence all
the application scaling activity should guarantee that the
limit value is not reached. The MAR is the rate for which
the application reaches %K Oz, a given maximum
allowed %K O value.

The performance results plotted in Fig. 4 provide
KOs and rate required as functions of Cs¢rs. From these
figures, choosing a %K O,q. value of 5%, it is possible
to obtain the histograms in the left column of Fig. 5 (
(a), (c), (e), (g)). On each column of the histogram is
also shown the configuration cost on AWS, as resulting
from the values in Table 2. As was to be expected, more
expensive the configuration, higher the rate of requests
that can be sustained without trespassing the desired
DK Opmae value.

It is worth pointing out explicitly that these diagrams
show the maximum rate and not the maximum number
of concurrent users, because the latter is not measurable
easily by an external scaling/monitoring agent. On the
other hand, the rate of requests can be obtained with
negligible monitoring overhead by measuring it at the
load balancer node, without requiring the use of probes
inside the application, which can thus still considered as
a black box.

The plots in the right column of Fig. 5 show
instead the cost for one thousand requests for each rate
sustainable by each deployment configuration. In these
plots it is interesting to note that the configurations
2WPmedium_1DBmedium and 1WPmedium_1DBlarge have
similar cost behavior. However, they are not completely
equivalent, as they are characterized by different
MAR and response times. The same observation is
true for the configurations 3WPmedium_1DBmedium and
2WPmedium_1DBlarge.

The diagrams in the left column of Fig. 5 make it
possible to find for each profile the optimal configuration
at any given request rate. If the only optimization
objective is cost reduction, the optimal configuration at a
given rate is the one with minimum cost “covered” by one
of the columns in the diagram at that rate. For example,
for the Author profile, it is possible to observe that:

e Rate 0 - 73.06: the optimal configuration is
1WPmedium_1DB medium;

e Rate 73.06 - 81.34: the optimal configurations
are 1WPmedium_1DB large and 2WPmedium_1DB
medium. These are roughly equivalent as cost is
concerned, but, as noted above, are characterized
by different performance indexes;

e Rate 81.34 - 95.08: the optimal configuration is
2WPmedium_1DB medium;

e Rate 95.08 - 140.24: the optimal configuration
is 2WPmedium_1DB large.

Ko%

Ko%

Ko%

Black-box Load Testing to Support Auto Scaling Web Applications in the Cloud

author - KO% author Rate required author RT - measured author RT Coefficient of Variation RT - measured
« « 1WPmedium_1DBmedium « + 1WPmedium_1DBmedium + + TWpmedium_10Bmedium +« IWPmedium_1DBmedium
© ¢ 2WPmedium_1DBmedium 160|| @ © 2WPmedium_1DBmedium et 4000f| s o 2WPmedium_1DBmedium asf|® ® - "
15/|® 3WPmedium_1DBmedium * o 3WPmedium_1DBmedium = © « o 3WPmedium_10Bmedium .. 3mee:‘ m_:g::ne jium |
o o 1WPmedium_1DBlarge 1a0f| ¢ o 1WPmedium_1DBlarge | N 35001 ¢ o JWPmedium_1DBlarge aol|® @ 2WPmedium_; Iarge
© o 2WPmedium_1DBlarge © o 2WPmedium_1DBlarge e M 3000]|® © 2WPmedium_1DBlarge e 2W""\edlu"_lDBIar';e
Lo|[* ¢ 3WPmedium_108large 120[| @ © 3wWPmedium_1DBlarge o o 3wPmedium_1DBlarge | 3WPmedium_1DBlarge
F 5 2500) 27 { e
£ 100, £ g
p E 2000 20
5| 2
w
1500 .
© 1000
o
20
40 500|
N
T R R R R T R TR R % T T B W W we T =
Cuser cuser Cuer Cuser
(a) Author, KO% (b) Author, rate required (c) Author, response time (d) Author, COV of RT
editor - KO% editor_Rate required editor RT - measured editor RT Coefficient of Variation RT - measured
« « 1WPmedium_1DBmedium « + 1WPmedium_1DBmedium e+ IWPmedium 1DBmediom « o 1WPmedium_1DBmedium
o o 2WPmedium_1DBmedium o o 2WPmedium_1DBmedium oo oo . 2Wpmedium 1DBmedium o o 2WPmedium_1DBmedium
1o i ° oo - 35| o 3WPmedium_1DBmedium|
1st|® ® 3WPmedium_1DBmedium * o 3WPmedium_1DBmedium 50001 4 o 3WPmedium_1DBmedium -
o 1WPmedium_1DBlarge © o 1WPmedium_1DBlarge o 1WPmedium_1DBlarge o 1WPmedium_1DBlarge
o o 2WPmedium_1DBlarge 12011 o o 2wPmedium_1DBlarge a0l | ¢ 2WPmedium_1DBlarge 2 sol|® ZWPmed!um_lgl;:arge
10| ° 3WPmedium_1DBlarge © o 3WPmedium_1DBlarge o o 3WPmedium_1DBlarge S © © 3WPmedium_1DBlarge
= / E 3000 M 2
5 I / E
/ - 20
2000 .
60| 4 . .
° 1000 B 15
o 7z
Y ot B
] S w @ Be W W @ % T B B B % H we R R
Cuser Coer =
(e) Editor, KO% (f) Editor, rate required (g) Editor, response time (h) Editor, COV of RT
-KO% Rate required AT - measured RT Coefficient of Variation RT - measured
« « 1WPmedium_1DBmedium . <+ 1WPmedium_1DBmedium e e TWPmediam_1DBmedim « « 1WPmedium_1DBmedium
o o 2WPmedium_1DBmedium 160/| s » 2WPmedium_1DBmedium « + 2WPmedium_10Bmedium wll ZWPmedlum_]DBmejlum
15||® ¢ 3WPmedium_1DBmedium © o 3wWPmedium_1DBmedium | o 4000]|® © 3WPmedium_10Bmedium o 3"‘"’"‘9"!”"‘—1‘;2:“2 lum
© o 1WPmedium_1DBlarge 140f|® o 1WPmedium_1DBlarge J « o 1WPmedium 1DBlarge y .o 1WPmed|um,:Dmarge
o o 2WPmedium_1DBlarge o o 2WPmedium_1DBlarge « o 2WPmedium_10Blarge o 5| o 2wPmedium_ jrce
3WPmedium_1DBlarge 120[| @ © 3WPmedium_1DBlarge © o 3WPmedium_1DBlarge e © o 3WPmedium_1DBlarge
10 ® 3000 - N
F 7 e]
Eo H / §a
% E
5 € 2000
80 . ® e 25
60 ey o]
[1000 /{ P e 2.0
.
o
N
S e W B % W o %W W B B W W @ 5 B %o E me o w e w W w w
Cuser o cier
(i) ShopManager, KO% (j) ShopManager, rate required (k) ShopManager, response (1) ShopManager, COV of RT
time
userreader - KO% userreader Rate required \serreader RT - measured userreader RT Coefficient of Variation RT - measured
« « 1WPmedium_1DBmedium « + 1WPmedium_1DBmedium e e+ IWPmedium ToBmediom « « 1WPmedium_1DBmedium
o 2WPmedium_1DBmedium . * o 2WPmedium_1DBmedium - - o o 2WPmedium 1DBmedium asf|e e ZWPmed‘ m_lDBmed!um
20 o - i gl - o o 3WPmedium_1DBmedium
o o 3WPmedium_1DBmedium « o 3WPmedium_1DBmedium . 000!/ ® © 3WPmedium_10Bmedium
© o 1WPmedium_1DBlarge o o 1WPmedium_1DBlarge < © o 1WPmedium_1DBlarge 40f|e o 1WPmedium_1DBlarge
i 120, i . ® o 2WPmedium_1DBlarge
15| 2wPmedium_10Blarge o o 2WPmedium_1DBlarge o o 2WPmedium_1DBlarge finie
o o 3WPmedium_1DBlarge © o 3WPmedium_1DBlarge ol o ¢ 3WPmedium_108large 3s||e o 3wpmedium_1DBlarge
élﬂc ’/‘ 5 § o
10] £ £ E
% w0 E
E i 2000 2
s
o B
1000
o 40| 15|

Cuser

(m) Reader, KO%

50 100 150 200 250 300 350 400
Cuser

(n) Reader, rate required

Ccuser

(o) Reader, response time

Figure 4: Benchmarking results for the four user profiles

Ccuser

(p) Reader, COV of RT

XX et al.

author - MAR - KO max:5%

3WPmedium_1DBlarge 0.288 $/h 163.2

2WPmedium_1DBlarge 0.2304 $/h

1WPmedium_1DBlarge 0.1728 $/h

3WPmedium_1DBmedium 0.2304 $/h

2WPmedium_1DBmedium 0.1728 $/h 95.08

1wPmedium_1DBmedium 0.1152 $/h

80 100 120 140 160 180
rate
(a) Author, max rate and cost
editor - MAR - KO max:5%
3wPmedium_1DBlarge 0.288 $/h 143.44
2wPmedium_1DBlarge 0.2304 $/h 129.36
1wPmedium_1DBlarge 0.1728 $/h
3WPmedium_1DBmedium 0.2304 $/h 85.37
2WPmedium_1DBmedium 0.1728 $/h 90.57
1WPmedium_1DBmedium 0.1152 $/h
80 100 120 140 160

rate

(c) Editor, max rate and cost

shopmanager - MAR - KO max:5%

3WPmedium_1DBlarge 0.288 $/h

2WPmedium_1DBlarge 0.2304 $/h 19

1WPmedium_1DBlarge 0.1728 $/h

3wWPmedium_1DBmedium 0.2304 $/h 99.07

2WPmedium_1DBmedium 0.1728 $/h 96.12

1WPmedium_1DBmedium 0.1152 $/h

80
rate

(e) ShopManager, max rate and cost

userreader - MAR - KO max:5%

3WPmedium_1DBlarge 0.288 $/h

2WPmedium_1DBlarge 0.2304 $/h 137.28

1WPmedium_1DBlarge 0.1728 $/h
3wPmedium_1DBmedium 0.2304 $/h
0.1728 $/h

2WPmedium_1DBmedium

1WPmedium_1DBmedium 0.1152 $/h

80 100
rate

120

(g) Reader, max rate and cost

Figure 5: Maximum sustained rate and cost per k requests for %K O,,q.,=5%

Cost per K requests

Cost per K requests

Cost per K requests

Cost per K requests

author - Cost per K requests

0.0025
— 1WPmedium_1DBmedium
— 2WPmedium_l1DBmedium
0.0020 \ — 3WPmedium_1DBmedium
\ — 1WPmedium_1DBlarge
—— 2WPmedium_l1DBlarge
3WPmedium_1DBlarge
0.0015 =
0.0010
0.0005 “ —
0.0000
20 40 60 80 100 120 140 160 180
rate (Req/s)
(b) Author, cost per k requests
0.0030 editor - Cost per K requests
— 1WPmedium_1DBmedium
— 2WPmedium_1DBmedium
0.0025 — 3WPmedium_1DBmedium
\ — 1WPmedium_l1DBlarge
0.0020 — ZWPmed?um_lDBlarge
3WPmedium_1DBlarge
0.0015
0.0010
0.0005 —
0.0000 -
20 40 60 80 100 120 140 160
rate (Req/s)
(d) Editor, cost per k requests
0.0025 shopmanager - Cost per K requests
— 1WPmedium_l1DBmedium
— 2WPmedium_1DBmedium
0.0020 — 3WPmedium_1DBmedium
\\ — 1WPmedium_l1DBlarge
\ —— 2WPmedium_l1DBlarge
3WPmedium_1DBlarge
0.0015
0.0010
‘\\
0.0005 -
0.0000
20 40 60 80 100 120 140 160 180
rate (Req/s)

(f) ShopManager, cost per k requests

userreader - Cost per K requests

0.0035
— 1WPmedium_1DBmedium

0.0030 — ZWPmed!umleBmedlum
— 3WPmedium_1DBmedium
— 1WPmedium_l1DBlarge

0.0025 2WPmedium_1DBlarge

3WPmedium_1DBlarge

0.0020

0.0015

0.0010

0.0005 —

0.0000

20 40 60 80 100 120 140 160
rate (Req/s)

(h) Reader, cost per k requests

Black-box Load Testing to Support Auto Scaling Web Applications in the Cloud 9

Even in cases when the cost is not the sole
optimization factor, the figures found by load testing the
application before its actual deployment in the cloud can
be employed by auto-scalers to support effectively any
provisioning policy.

6 Conclusions

In this paper we have presented a methodology that
makes it possible to support scalability policies for
web applications running in the cloud with leased
resources, taking into account both performance and
cost. Our proposal relies on the use of off-line profiling,
which allows to obtain system performance information
through automated benchmarking based on simplified
models of the possible application workloads. The
information measured off-line makes it possible to find
beforehand acceptable user request rates, taking into
account the leasing cost of any chosen configuration.
Dynamic run-time measurements of user request rates
make it possible to scale the application making a trade-
off between cost and user-perceived performance.

Our method relies on the use of an innovative
performance index, the MAR (Maximum Allowed Rate).
Such index is measured by black-box load testing the
application with synthetic workloads that take into
account common usage patterns. As shown for a case
study application, the analysis enables to identify easily
performance indexes that can be exploited by auto-
scalers to found trade-offs between costs and quality of
service of the application, when deployed in cloud in
different configurations.

As a future development, we plan to extend our
methodology in order to consider more complex type of
workloads, composing different application user profiles.
Another important research activity regards the possible
use of prediction techniques to measure our benchmark
indexes without performing expensive measurements, as
the ones that led to the results presented here. At the
state of the art, we simply neglect the scaling time from
one configuration to another. We plan to extend our
analyses in order to take into account these parameters.
Last but not least, we plan to apply our methodology
to commonly-used scalability frameworks and tools for
clouds, in order to supply scalability policies to be
enforced taking into account both user satisfaction and
application costs.

References

[1] https://azure.microsoft.com/en-in/
features/autoscale/.

[2] https://cloud.google.com/compute/docs/
load-balancing-and-autoscaling.

[3] https://selenium.dev.

[4] https://gatling.io/docs/current/
quickstart\#using-the-recorder.

[5] https://wordpress.org.

[6] https://wordpress.org/support/article/
installing-multiple-blogs.

[7] V. Andrikopoulos, S. Gomez Séez, F. Leymann, and
J. Wettinger. Optimal distribution of applications
in the cloud. In M. Jarke, J. Mylopoulos, C. Quix,
C. Rolland, Y. Manolopoulos, H. Mouratidis, and
J. Horkoff, editors, Advanced Information Systems
Engineering, pages 75-90, Cham, 2014. Springer
International Publishing.

[8] J. Barr. New AWS auto scaling - unified scaling for
your cloud applications, 2018.

[9] A. H. Borhani, P. Leitner, B. Lee, X. Li,
and T. Hung. Wpress: An application-driven
performance benchmark for cloud-based virtual
machines. In 2014 IEEE 18th International
Enterprise Distributed Object Computing
Conference, pages 101-109, Sep. 2014.

[10] V. Casola, A. De Benedictis, M. Rak, and
U. Villano. An automatic tool for benchmark
testing of cloud applications. In CLOSER 2017 -
Proc. of the 7th Int. Conf. on Cloud Computing and
Services Science, pages 701-708, 2017.

[11] M. Catillo, M. Rak, and U. Villano. Auto-scaling
in the cloud: Current status and perspectives.
In Barolli L., Hellinckx P., and Natwichai J.,
editors, Advances on P2P, Parallel, Grid, Cloud and
Internet Computing, volume 96 of Lecture Notes in
Networks and Systems, pages 616-625, 2019.

[12] T. Chen, R. Bahsoon, and X. Yao. A Survey
and Taxonomy of Self-Aware and Self-Adaptive
Cloud Autoscaling Systems. ACM Comput. Surv.,
51(3):1-40, June 2018.

[13] Gatling Corp. Gatling - Performance testing for web
applications - web site. https://gatling.io/, 2018.

[14] N. Grozev and R. Buyya. Performance Modelling
and Simulation of Three-Tier Applications in Cloud
and Multi-Cloud Environments. The Computer
Journal, 58(1):1-22, January 2015.

[15] G. Horn and P. Skrzypek. MELODIC: Utility
Based Cross Cloud Deployment Optimisation.
In 2018 32nd International Conference on
Advanced Information Networking and Applications
Workshops (WAINA), pages 360-367, Krakow,
May 2018. IEEE.

[16] Kai Hwang, Xiaoying Bai, Yue Shi, Muyang
Li, Wenguang Chen, and Yongwei Wu. Cloud
performance modeling and benchmark evaluation
of elastic scaling strategies. IEEFE Transactions on
Parallel and Distributed Systems, 27:1-1, 01 2015.

10

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

XX et al.

V. Lesch, A. Bauer, N. Herbst, and S. Kounev.
FOX: Cost-awareness for autonomic resource
management in public clouds. In Proceedings of
the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE 18, pages 4-15,
New York, NY, USA, 2018. ACM.

T. Lorido-Botran, J. Miguel-Alonso, and J. A.
Lozano. A Review of Auto-scaling Techniques
for Elastic Applications in Cloud Environments.
Journal of Grid Computing, 12(4):559-592,
December 2014.

M. Maurer, I. Breskovic, V. C. Emeakaroha, and
I. Brandic. Revealing the MAPE loop for the
autonomic management of Cloud infrastructures.
In 2011 IEEE Symposium on Computers and
Communications (ISCC), pages 147-152, Corfu,
Greece, June 2011. IEEE.

P. Mell and T. Grance. The NIST definition of cloud
computing. NIST Special Publication, 800:145,
2011.

D. Moldovan, H. Truong, and S. Dustdar. Cost-
aware scalability of applications in public clouds.
In 2016 IEEFE International Conference on Cloud
Engineering (IC2E), pages 79-88, April 2016.

C. Qu, R. N. Calheiros, and R. Buyya. A reliable
and cost-efficient auto-scaling system for web
applications using heterogeneous spot instances.
CoRR, abs/1509.05197, 2015.

Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar
Buyya. Auto-Scaling Web Applications in Clouds:
A Taxonomy and Survey. ACM Computing Surveys,
51(4):1-33, July 2018.

M. Rak, R. Aversa, B. Di Martino, and A. Sgueglia.
Web services resilience evaluation using LDS
load dependent server models. Journal of
Communications, 5(1):39-49, 2010.

A. Sampaio, T. Rolim, N. C. Mendonga, and
M. Cunha. An approach for evaluating cloud
application topologies based on TOSCA. In
2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pages 407414, June 2016.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. An Analytical Model for
Multi-tier Internet Services and Its Applications.
In Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, pages 291-302, June
2005.

J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao,
L. Chunhong, L. Niu, and C. Junliang. A cost-aware
auto-scaling approach using the workload prediction

in service clouds. Information Systems Frontiers,
16:7-18, 03 2014.

[28] Q. Zhang, L. Cherkasova, and E. Smirni. A

Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications.
In Fourth International Conference on Autonomic
Computing (ICAC’07), pages 27-27, Jacksonville,
FL, USA, June 2007. IEEE.

