NOTICE: This is a pre-copyedited version of a contribution published in Shepperd
M., Brito e Abreu F., Rodrigues da Silva A., Pérez-Castillo R. (eds) Quality of
Information and Communications Technology, QUATIC 2020, Communications in
Computer and Information Science, vol 1266, published by Springer International
Publishing.

The definitive authenticated version is available online via
https://doi.org/10.1007/978-3-030-58793-2 25

Towards a Framework for Improving DoS
Cybersecurity Experiments

Marta Catillo, Antonio Pecchia, and Umberto Villano

Dipartimento di Ingegneria
Universita degli Studi del Sannio, Benevento, Italy
{marta.catillo,antonio.pecchia,villano}@unisannio.it

Abstract. Inrecent years, a number of solutions have been proposed for
the detection of Denial of Service (DoS) attacks. Most of them have been
tuned and tested by means of publicly available labelled datasets, which
can be conveniently used to overcome the scarceness of real-life data
gathered under incidents and attacks from production environments.
Notwithstanding the value of existing algorithms in providing extremely
high detection rates, there is little concern about the cybersecurity im-
plications of the traffic data used, i.e., in terms of representativeness and
impact on continuity and operations of the victim services.

This paper presents a starting step towards a framework for replaying
and assessing DoS attacks. The framework aims to improve DoS cyberse-
curity experiments by allowing to replay previously-recorded attack traf-
fic available in packets data files. It features a number of components,
such as a victim and a load generator, that allow to conduct experi-
ments in a controlled and configurable environment. Overall, this makes
it possible to assess DoS traffic itself and contextualize the effect on the
service under assessment and potential countermeasures. The framework
is proven by means of direct DoS emulation and traffic replay.

Keywords: DoS - traffic replay - network capture dataset.

1 Introduction

Nowadays Denial of Service (DoS) attacks pose a significant threat on the avail-
ability of network services [10]. In this context, early attack detection and pre-
vention are crucial in order to guarantee the continuity of service to the end
user. Customarily, during a DoS attack a malicious user intentionally floods the
target server with many service requests with the aim of clogging it or even
interrupting its activity [12]. In such a scenario, the server is forced to allocate
resources to process a multitude of requests so that it fails to provide services to
other legitimate customers/users. In the last years, DoS attacks evolved into a
second generation, the so-called Slow DoS attacks [16]. These use low-bandwidth
approaches that exploit application-layer vulnerabilities. Thanks to the plethora
of ready-to-use and easy-to-find attack tools available on the net, performing
both flooding and slow DoS attacks is extremely simple and does not require

2 M. Catillo, A. Pecchia, and U. Villano

any coding experience. However, if these tools have made extremely easy the
task of attackers, on the other hand have led to the collection of datasets of
network traffic under attack to be used for intrusion detection research.

In order to mitigate DoS attacks, a number of countermeasures have been
taken over the years [17]. Some conventional approaches are based on the mon-
itoring of the connection request rate. A requesting client whose connection
request rate is higher than a pre-established threshold is marked as an attacker.
However, such approaches have obvious weaknesses as in some cases a legitimate
requesting user could have a short-term burst of connection requests without
leading an attack. Moreover, they are mostly uneffective for Slow DoS attacks. In
recent years, with the rapid diffusion of deep learning techniques, many machine
learning-based DoS detectors have spread in the literature [9]. All these solutions
achieve very encouraging results in terms of detection rate, which in some cases
can even reach values close to 100%. In most cases, the experimentation and
evaluation of a new detector takes place on public-domain datasets, which are
used as a sort of benchmark to assess the validity of the proposal. These data are
typically made available in the form of pcap trace files and correspond to several
different attacks emulated in a test environment. Popular public-domain intru-
sion detection datasets are CICIDS2017 [13], UNSW-NB15 [11], ISCX 2012 [14].
Unfortunately, most of the times these datasets are used blindly, thus by over-
looking the representativeness of the traffic data therein. As a matter of fact,
in the relevant literature it is possible to observe the tendency to pay more
attention to the tuning of the detection algorithm, than to the data on which
these algorithms are evaluated. As this would invalidate the effectiveness of de-
tection under real-world traffic conditions, it is necessary to ensure that research
datasets conform to representative operating conditions.

This paper presents a starting step towards a framework for replaying and
assessing DoS attacks. We aim to improve DoS cybersecurity experiments by
allowing to replay previously-recorded attack traffic —available in packets data
files— within a controlled and configurable environment. In particular, our tool
leverages pcap trace files, which are typically generated by network utility pro-
grams such as tcpdump. Our framework has been designed to meet several open
challenges in current DoS research:

— Public research datasets might not conform to representative operating con-
ditions. Our replay tool could be a key component for assessing the impact
of traffic data, with a consequent construction of more rigorous intrusion
detection datasets. Noteworthy, many existing intrusion detection datasets
come with pcap trace files that can be replayed within our framework;

— Many machine learning-based algorithms are currently spreading for the
detection of network intrusions and, in particular, DoS attacks. Most of
them are tested and evaluated with public domain datasets that contain DoS
attacks launched in a simulated environment. Our framework can support in
tuning detection algorithms by reliving the attacks within controllable and
configurable victim services and load conditions;

Towards a Framework for Improving DoS Cybersecurity Experiments 3

— Finding the suitable “defense threshold” of the system under assessment is
always a complex operation. Since our replay tool allows an effective evalu-
ation of the impact of a DoS attack, it could be used to understand whether
to strengthen or loosen the defenses as appropriate.

Although in the literature there are some traffic replay tools for network anal-
ysis purposes, there are no frameworks that allow to carry out traffic assessments
in a structured way with the aim of conducting comprehensive security experi-
ments. Our ultimate goal is to create a framework that collects a series of “best
practices” —traffic replay is one of them— to conduct rigorous security experi-
ments. The framework features a number of components, such a victim server
and a load generator, that allow to replay attack traffic data in a controlled
environment and to configure desired workload conditions. The framework is
proven by means of direct DoS emulation and traffic replay with CICIDS2017,
i.e., a recent dataset that is gaining massive attention by the community. Results
indicate that our tool can reproduce the impact of a previously-recorded DoS
and conveniently replay third-party data from an existing dataset.

This paper is organized as follows. Section 2 deals with related work. Section
3 describes our replay approach. The paper illustrates the framework in Section
4 and describes the experiments that aim to provide practical insights into its
usage in Section 5. Finally, conclusions are drawn and our future work outlined.

2 Related Work

There are many solutions in the literature that propose detection algorithms
tuned and tested by means of public domain intrusion detection datasets (trace-
based). A machine learning-based DoS detection system is presented in [3]. The
approach used by the Authors is based on inference and the detection rate
achieved is 96%. In [7], instead, it is described a feature reduction method in
order to detect DoS in a reduced feature space with the PART classifier. At
best, the Authors hit a 99.98% recall for DoS Hulk. In [2] the Authors describe
a hierarchical intrusion detection system that provides for the combination of
several classifiers. In particular, following a hierarchical approach, the system
uses three classifiers placed on different levels of the training phase. They reach
an overall detection rate of 94.475% and a false alarm rate of 1.145%. Finally,
in [4] the Authors propose a DoS anomaly detector that uses a deep autoencoder
as core component of the infrastructure. The Authors highlight the potential of
the proposal for 0-day attacks.

In this context of network security experiments, the use of appropriate tools
for generating controllable, reproducible, and realistic network traffic is of ex-
traordinary importance. Therefore, with the aim of testing environments for
security products, over time several network traffic replay tools have spread.
In general, replay tools can be either stateless or stateful. Those that follow a
stateless approach replay packets according to their timestamps, and the content
of replayed network packets is exactly the same as that stored in the original

4 M. Catillo, A. Pecchia, and U. Villano

Tool Is stateful? Payload Approach Main feature
.. Replays traces
tcpreplay [|] No Original Trace-based at a specified
payload
rate
. .. Replays traces
tepliveplay Yes Original Trace-based | using new TCP
[15] payload .
connections
Original Statistical- TCP state
TCPOpera [(] Yes payload based emulation
.. TCP replay for
Our tool [6] Yes Original Trace-based security
payload .
experiments

Table 1: Replay tools - summary of comparison.

network traces. On the other hand, stateful replay tools are much more sophis-
ticated. They manage the state of connections during replay, and therefore the
content of replayed network packets may need to be altered in order to fit the
“new” network configuration. As for the payload generation methods, instead,
there are replay tools that do not alter the payload of the original packets, while
others are able to replay packets with a new, “re-generated” payload. Another
possible difference is between tools that follow a trace-based replay and others
that perform a statistical replay. The former provide that the traffic sent over
the network during replay is identical to the traffic contained in the capture
file. The latter, instead, analyze the original captured traffic in order to collect
statistical information (overall packet frequency, timing between packets, etc.)
and generate new traffic traces that are similar to the original capture.

One of the most famous replay tools is surely tcpreplay [l]. In fact, it is
a suite of tools containing a series of open-source UNIX utilities. In particular,
tcpreplay it is a command-line tool designed to work with standard network
cards. It simply replays previously captured traffic traces at a specified rate and
does not actively modify the information of the transport layer header and the
payload of a packet. However, tcpreplay is completely stateless and is unable
to handle the update of TCP sequence and acknowledgement numbers. There-
fore, it does not support replaying data exchanges to/from a server. In order to
overcome this limitation, the same suite provides tcpliveplay [15], a tool that
replays packet captures statefully by keeping track and updating TCP sequence
numbers. Finally, a tool that performs a statistical replay is TCPOpera [6]. It is
designed for a stateful emulation of TCP connections. TCPOPera does not pro-
vide trace-based replay of the captured data. It first develops analytics from a
packet trace, then creates a statistical model of the identified events, and finally
generates synthetic traffic flows from the model.

The tool on which hinges the framework proposed in this paper uses a state-
ful replay approach, starting from the captured DoS traces in pcap format and
preserving the original payload of packets. Unlike the aforementioned tools, de-
signed essentially for network analysis or diagnostic activities, it is conceived
as a lightweight, ready-to-use solution for replaying and assessing DoS attacks

Towards a Framework for Improving DoS Cybersecurity Experiments 5

that typically appear in pcap format in most intrusion detection datasets. It
is, therefore, a key tool for conducting a robust experimentation and validation
of the detection techniques commonly tested and tuned on public DoS network
traffic data for cybersecurity research. Table 1 summarizes the characteristics of
the above cited replay tools with respect to our proposal.

3 Ongoing Replay Tool
3.1 Design

As briefly mentioned in the introduction, our framework hinges on a tool that
allows to replay previously-recorded network traffic under realistic conditions,
so as to measure the impact of attacks on a suitably-configured web server and
load conditions. One of the hallmarks of our replay tool is surely simplicity, both
in terms of design and use. As a matter of fact, given an input pcap file, it can
be used as a common command line tool. In particular, the input pcap trace
file contains the network capture we want to replay (that in our case includes a
DoS attack to a web server). PCAP (Packet CAPtures) files are commonly used
for storing traffic network traces. Currently there are multiple widely accepted
pcap formats, but one of the most popular is LibPCAP [5]. The name derives
from the library of the same name, where it is formally defined. LibPCAP is the
oldest pcap format, but it is the most popular, mainly because is the default
format used by widely used network applications such as tcpdump. In addition,
most intrusion detection datasets provide DoS traces in LibPCAP format. The
typical structure of a LibPCAP file is shown in Figure 1. In particular, the first
element is a Global Header (GH) with general traffic information, such as the
correction to UTC time or the specific endianness (big/little). There then follow
packets characterized by Packet Header (PH) (including timestamps and data
sizes) and Packet Data (PD).

As previously mentioned our replay tool follows a trace-based replay ap-
proach. In particular, its ultimate goal is to relive previously-recorded traffic
towards arbitrary IP addresses and over brand-new sockets and connections,
without altering the payload of the original packets. Therefore, since the tool
supports replaying data exchanges to/from a server, it can be considered fully

Global Header (GH)

Packet Header (PH)

Packet 1

Packet Data (PD)
Packet Header (PH)

PCAP FILE

Packet 2
T

Packet Data (PD)

Fig. 1: LibPCAP file structure.

6 M. Catillo, A. Pecchia, and U. Villano

09:07:05.766440 IP 192.168.56.102.39842 > 192.168.56.101.http:
Flags [S], seq 2633020550, win 64240, options [mss 1460,sack0K,
TS val 2720361938 ecr O,nop,wscale 7], length 0
09:07:05.766674 IP 192.168.56.102.39842 > 192.168.56.101.http:
Flags [.], ack 1353780858, win 502, options [nop,nop,TS val
2720361938 ecr 153334785], length 0

09:07:05.766728 IP 192.168.56.102.39842 > 192.168.56.101.http:
Flags [P.], seq 0:19, ack 1, win 502, options [nop,nop,TS val
2720361939 ecr 153334785], length 19: HTTP: GET /?12 HTTP/1.1

Fig. 2: Human-readable tcpdump -r of three example packets.

stateful. This feature is not trivial, as most existing replay tools are not able to re-
play traces using new TCP connections. It is worth pointing out that the proposal
closest to our work, in that offers a similar replay service, is tcpliveplay [15].
Unfortunately, the use of tcpliveplay for our purposes has not produced the
expected result. The weaknesses of tcpliveplay are also confirmed by the in-
tense ongoing bug fixing activity carried out by the community'.

Unlike other available software, our tool replays traffic at the same rate it
was originally recorded in the pcap file. This functionality is extremely impor-
tant to reproduce effectively the original traffic conditions. The tool has been
implemented in python, exploiting dkpt3?, i.e., a module for fast packet creation
and parsing with definitions for the basic TCP/IP protocols.

3.2 Approach

The whole replay process, which starts from the acquisition of a DoS pcap file
and leads to the replay of the original trace, is described below. From the input
pcap, containing a previously-recorded DoS attack, we extract the packets sent
by a given source address to a given destination. More specifically, source and
destination identify the attacker and the victim, respectively. A visual and sim-
plified representation of the pcap content is shown in Figure 2. It shows a human-
readable tcpdump -r of three example packets (one packet spans three lines) sent
by IP 192.168.56.102 to IP 192.168.56.101. These addresses match the IP
of the attacking and the victim node used in our testbed, presented in the next
section. It is important to note that the figure shows just a small window of the
input pcap file, which typically consists of millions packets.

Given the input packets, since we want to replay a two-way communication
with data exchanges to/from a server, the destination address is rewritten with
the address of the server node towards which the traffic is intended to be sent for
replay purposes. Then the adjusted file is scanned sequentially. For each packet
in the file, the tool either (i) discards it (at this stage of development. our focus

! https://github.com/appneta/tcpreplay /issues /540
2 https://dpkt.readthedocs.io/en/latest /

Towards a Framework for Improving DoS Cybersecurity Experiments 7

Mimic
socket op. SYN ket [
rewrite s &’me Node
r [p] PUSH packet .
&0 22, 299, ReplayTooI 9D : =
DoS pcap
Discard

Fig. 3: Replay process.

is only on TCP traffic, and everything else is discarded) or (ii) mimics socket
operations based on the value of the Flags field, shown at the rightmost part
of the lines in Figure 3. The Flags letter is meaningful for the operation to be
performed. For example, the tool initiates a new socket connection upon [S]
(ie., a SYN packet) or sends data upon [P] (i.e., a PUSH packet). The operations
are differentiated on the basis of the timestamp of the packets contained in the
original capture. This allows to intercept and replay the actual timing of the
recorded packets. Moreover, at any time the tool maintains a suitable number
of active concurrent connections towards the destination address, based on the
actual number of socket opening and closing operations encountered across the
input packets. The whole replay process is depicted in Figure 3.

It is worth noting that the current implementation of the replay tool is not
“tuned” to manage some isolated cases. For example, in the original pcap trace
there may be packets corresponding to GET URL requests valid on the “original”
victim node, but invalid for the server on which the replay experiment is be-
ing performed. Furthermore, the tool might accidentally attempt to replay SSH
traffic with consequent and unavoidable authentication issues. Although we have
not yet addressed these issues, the current implementation allows to successfully
replay a significant class of DoS attacks. In particular, we are able to replay both
flooding and slow DoS. The two DoS categories exploit distinct attack strate-
gies, and therefore they leave different “fingerprints” inside the trace files. The
behavior of the replay tool is always aligned to the specific type of attack to be
replayed (more on this later).

4 Proposed Framework

We are striving for a comprehensive framework consisting of a number of compo-
nents that allow to conduct controlled and configurable DoS experiments. Whilst
our replay tool is a key addition towards addressing several open challenges in
DoS research stated in the Introduction, a typical security experiment includes
further steps, such as attack emulation, traffic data collection and evaluation
of performance metrics. As such, our “core” traffic replay tool is meant to be
instantiated in a controlled network testbed featuring a wvictim sever, i.e., the
target of the assessment, a load generator, i.e., the component supplying a con-

8 M. Catillo, A. Pecchia, and U. Villano

figurable workload to exercise the victim, and a supplementary attacker node,
which allows to conduct controlled attack emulations aimed at complementing
the findings obtained by means of replay. Although not covered in this starting
stage, in the future the framework will be enriched with additional facilities,
such as monitoring dashboards, network flows extractors and intrusion detec-
tors. Overall, the framework is conceived to follow a series of “best practices” in
computer performance evaluation.

4.1 Nodes and Usage Modes

In this current proposition, the framework above is instantiated by means of four
network nodes on a LAN, as follows:

- Attacker_1: emulates the attack by means of a suitable DoS tool hosted
on a Kali Linux node.

- Attacker_2: allows to replay the DoS attack by reliving the network traffic
gathered from a DoS previous capture stored in a pcap file.

- Victim: Apache 2.2 web server node.

- Load generator: triggers, through httperf®, HTTP requests that serve as
benign background load to exercise and to check the status of the web server
during the experiments.

Further information about the nodes is reported in Table 2. Noteworthy, the
framework we set up allows us to make experiments that involve both direct
emulation and replay of previously-recorded attacks. As such, it supports two
distinct usage modes:

1. attack emulation mode: consists in emulating real attacks by means of a
given DoS tool;

3 https://github.com/httperf/httperf

IP address Operating L
(role) System Application
192.168.56.101| Ubuntu LTS |Apache 2.2 web
(Victim) 12.04 server
192.168.56.103 Ubuntu LTS
(Load 12.04 httperf
Generator) ’
Kali
19216996193 G0 Tinux | Dos tol
- Roling 2019.4
192.168.56.1 | macOS Sierra |proposed replay
(Attacker_2) 101.2.6 tool

Table 2: Nodes description.

Towards a Framework for Improving DoS Cybersecurity Experiments 9

Active in emulationmode

" [Attacker_1 DoS traffic | [~ victim
L] — - o (live) %
: i DoS Tool Web Server
| 192.168.56.102 } 192.168.56.101 @
LAN
background DoS traffic
HTTP load
Active inreplaymode | | (replayed)
[Load generator [] Attacker_2
P [Repl
3o){_ftwert #2("%")
192.168.56.103 192.168.56.1

Fig. 4: Proposed assessment framework.

2. attack replay mode: consists in replaying a DoS attack by reliving the network
traffic from a previous capture.

Attacker nodes are used as follows. Attacker_1 allows emulating real attacks
by means of various DoS tools hosted by the Kali Linux node: it is unused in
replay mode. Attacker_2, instead, allows to replay an attack by reliving the
network traffic from a previous capture stored in a pcap file: it is unused in
emulation mode. Therefore, during the experimentation phase, the two attackers
are never simultaneously active. It is worth noting that in both operating modes
the web server is exercised concurrently with both DoS traffic (either emulated
or replayed in the two modes, respectively) and benign background HTTP load
generated by httperf. We selected the Apache web server as a significant case
study, given its widespread use. In Fig. 4 we show a complete representation of
our framework and its components.

4.2 Configurations and Evaluation Metrics

In order to emulate a realistic experiment, we adjusted the web server default
parameters (that can be found at /etc/apache2/apache2.conf in a typical
Linux-based system) because they may not be representative of real-life produc-
tion server. In the adjusted configuration we set MaxKeeplAliveRequests, i.e.,
number of requests over the same connection, to 0 (unlimited), ThreadLimit
to 1024, ThreadPerChild to 256 and MaxClients to 20148. These are crucial
parameters for making realistic assessments on production servers.

Our current focus is on DoS attacks. This type of attack often involves the
opening of a substantial number of concurrent connections to the target. By
default, Unix-like machines often have a ceiling to the allowed number of simul-
taneously open files (1024 by default) and hence to the maximum number of

10 M. Catillo, A. Pecchia, and U. Villano

currently opened sockets available to a process. We set this number to 200,000
with ulimit -n before launching the attack. This number is large enough to
avoid any interference or saturation effect by the operating system. As a further
note, we conducted a capacity analysis of the web server before performing any
experiment, in order to discover the maximum load that can be handled by the
server in attack-free conditions. The details of the capacity analysis are omitted
here due to space limitations; however, we found out that in normal DoS-free
conditions the RT of the server in our testbed is 0.2 ms, without exceeding its
maximum load capacity.
The selected metrics for the evaluation of our experiments are as follows.

- Load (L): the desired level of load to stress the web server during a testing
timeframe. We set this value by exploiting parameters supported by httpert,
such as total connections, HT TP requests per connection and connection rate.
The load submitted to the server is measured in HT'TP requests per second
(req/s in the following).

- Response Time (RT): the time taken to serve a request measured in mil-
liseconds (ms). It is useful for evaluating server performance. For completed
HTTP requests, the response time is a fundamental index as it impacts the
QoS perceived by the application users.

5 Experimental Results

Experiments aim to provide practical insights into the usage of the proposed
framework to replay DoS attacks. Evaluation is twofold: (i) replay of a fully
“controlled” DoS attack generated within our framework, and (ii) replay of a
DoS taken from a state-of-the-art public research dataset. The former is intended
to demonstrate the ability of our framework at reproducing the impact of a
DoS; the latter entails a potential use case of the framework in assessing the
resiliency of a victim service by leveraging existing third-party malicious traffic.
The experiments presented here focus on Slowloris, which is a DoS attack that
aims to saturate the victim server, opening connections, but never completing
the HTTP requests. It is a well-known application-level attack, often effective:
as such, it is strongly relevant in the context of our work.

5.1 Replay of a Controlled DoS

We mimic a real Slowloris DoS, beforehand. Emulation is done in our con-
trolled network by attacking the victim server, i.e., 192.168.56.101, with a
well-consolidated Slowloris GitHub tool* hosted by the Kali Linux node, i.e.,
Attacker_1. This will be referred to as the “original” attack throughout this
Section. Moreover, during the progression of the attack the victim undergoes a
concurrent, benign, load of 1,000 regs/s generated by httperf, whose response
time is monitored in order to assess the impact of the DoS. It should be noted

4 https://github.com/gkbrk/slowloris

Towards a Framework for Improving DoS Cybersecurity Experiments 11

o
. S --e-- original —<— replay
N o | » . X 7 P ® o

= LIS Ay S ot e PG X e
£ 7 A bt fory RIS WAtV Faf e
=~ 7 WV R O LAT W LS S AR T
x R O3V NE O I PV L A O

_ Ve W WX dx W ox

S T \ T \ \

0 200 400 600 800 1000 1200
time (s)

Fig.5: RT during the original attack and its replay (y-axis is in log scale).

20
|

—_
'
'
|
|
|
|
|
|

J

[[
ORIGINAL REPLAY

RT (ms)

0 5 10
|
tr

Fig. 6: Boxplot of the response time.

that at this stage we also record the attack traffic in a pcap packet data file, so
that it can be replayed later on, which is the purpose of our framework.

Fig. 5 (e-marked series) shows how RT varies during the progression of the
original attack. In the plot, the x-axis represents the time since the beginning of
the experiment; the y-axis is given in log scale to better appreciate fluctuations
around low RT values. The duration of the experiment is large enough to collect
a large sample, i.e., >30 observations, in order to make statistical claims. The
attack impacts service operations, whose RT = 0.2 ms in attack-free conditions,
and —occasionally— it causes up to RT=10 ms, which is a significant degradation.
Noteworthy, 10 ms is seen as a typical maximum tolerable delay for a response
of a web server in order to be usefully deployed in multilayer workflows [3].

The second part of the experiment consists in replaying the traffic recorded
during the “original” attack: our aim is to verify whether we can reproduce
similar effects on the server. As in the previous experiment, the victim server
is exercised with a load L=1,000 reqs/s during the progression of the replay;
however, the attacker is now represented by the replay node (which is fed with
the pcap file recorded) rather than Kali Linux. RT measured during the replay
is shown in Fig. 5 (x-marked series) and superimposed to the original attack for
better comparison. Interestingly, the “appearance” of the time series is similar:
replay seems to reasonably well mimic the original attack.

12 M. Catillo, A. Pecchia, and U. Villano

Table 3: Summary of RT statistics within the original attack and its replay.

mean|standard |95% confidence
deviation interval
ORIGINAL| 3.97 | 4.02 (2.96, 4.99)
REPLAY | 3.40 3.77 (2.59, 4.22)

Beside the visual test, we conduct further statistical analysis. Fig. 6 shows
the paired boxplots of the response time of the original attack and its replay.
The leftmost boxplot highlights few sporadic outliers (depicted by circles) in
case of the original attack. Most notably, IQRs® (Inter Quartile Ranges), which
catch the dispersion of the RT around the median value, strongly overlap. Table
3 shows sample mean, standard deviation and 95% confidence interval of the RT
observations after filtering out the outliers. It can be noted that the sample mean
of RT during the original attack, i.e., 3.97 ms is within the CI of the replay and
viceversa: as such, it can be reasonably claimed that the impact of the original
attack and its replay are not statistically different. For the data in hand, the
proposed replay framework produces an attack that is statistically the same as
the original in terms of the effects on the server.

5.2 Replay of a Third-party DoS

We present here a replay experiment done with the Slowloris attack traffic of
CICIDS2017. It is worth noting that CICIDS2017 is a recent dataset that gained
massive attention by the community: the experiment is done to show the po-
tential of our framework at handling unseen third-party traffic. Given the pcap
packet data file available at the dataset’s webpage® we (i) extract all the packets
sent by 172.16.0.1 to 192.168.10.50 (i.e., attacker and victim in CICIDS2017,
respectively) within the timeframe of the Slowloris attack emulated by the Au-
thors and (ii) rewrite the destination as 192.168.56.101, which is the address
of the victim server in our testbed. The pcap obtained is fed to the replay frame-
work and run against our victim web server. Such as the previous experiments,
the victim undergoes a concurrent, benign, load of 1,000 regs/s, which is is mon-
itored to measure RT.

Fig. 7 shows how RT varies during the replay of CICIDS2017 Slowloris; again,
the y-axis is in log scale. Surprisingly, it can be noted that the attack causes only
marginal fluctuations above the normative response time of the server, which is
0.2 ms in attack-free conditions. Another interesting outcome is that RT under
attack is always significantly lower than 10 ms (again, the indication of the maxi-
mum tolerable delay for a response in many practical settings), which is a further

® The Inter Quartile Range (IQR) of a boxplot is the difference between the third and
first quartile.
S https://www.unb.ca/cic/datasets/ids-2017.html

Towards a Framework for Improving DoS Cybersecurity Experiments 13

o

S
o | 1oms
\E/ hat
]

— , !-'i. { % MY VY ‘&/ \8/ .\./"'v.-)‘ ﬂi'i‘ o % o e ¥ ¥ b,.u

o I \ \

0 200 400 600 800
time (s)

Fig. 7: RT during CICIDS2017 Slowloris (y-axis is in log scale).

remark of the scarse effectiveness of the attack. This is quite surprising given the
large body of literature on anomaly detection that capitalizes on CICIDS2017.
A closer look into CICIDS2017 Slowloris traffic revealed that —although some-
what relevant due to the abusive consumption of network resources— the attack
was not disruptive enough against a well “tuned-up” server resembling a real-life
configuration, such as the one of our testbed.

Although beyond the scope of this paper, this finding has major practical
implications when it comes to the representativeness of public datasets for cy-
bersecurity research and it will be investigated in the future. Noteworthy, it
provides some initial insights into the above-mentioned challenges in DoS re-
search, which pertains to the potential limitations of existing dataset in conform
to representative operating conditions.

6 Conclusions

The goal of our current work is to meet several open challenges in DoS cyberse-
curity experiments, with a focus on the quality of network capture datasets. The
paper is a step towards the design of a framework for replaying DoS attacks and
the implementation of a prototype tool that allows to relive previously-recorded
network traffic.

Our work is driven by the observation that research datasets might not con-
form to representative operating conditions. We show the validity of our proposal
by means of a DoS attack replay experiment. This is meant to evaluate both the
replay of a fully controlled attack and the replay of a DoS taken from a state-of-
the-art public research dataset. The results show that the proposed framework
replays a DoS attack obtaining statistically the same effects on the server as the
original one. The use of the framework to replay of a DoS from a state-of-the-
art dataset will give insight on the actual representativeness of public datasets
widely used for cybersecurity research. This analysis will be conducted in the
future.

The ultimate goal of our work is to develop an integrated set of tools that
enable traffic assessments in a structured way, with the aim of creating complete

14

M. Catillo, A. Pecchia, and U. Villano

security experiments. In particular, we aim to create a ready-to-use framework
for both researchers and practitioners that enables rigorous security experiments
starting with the deep analysis of the data and ending with the tuning of the
detection algorithm.

Acknowledgments

Removed for double-blind review reasons

References

1.
2.

10.

11.

12.

13.

Aaron, T., Bing, M.: Tcpreplay tool (2012), https://tcpreplay.appneta.com
Ahmim, A., Maglaras, L.A., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hier-
archical intrusion detection system based on decision tree and rules-based models.
In: 15th International Conference on Distributed Computing in Sensor Systems,
DCOSS 2019, Santorini, Greece, May 29-31, 2019. pp. 228-233. IEEE (2019)

. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B.,

Sengupta, S., Sridharan, M.: Data center tcp (dctcp). In: SIGCOMM Comput.
Commun. Rev. vol. 40, pp. 63-74. ACM (2010)

. Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-IDS

anomaly detector. Journal of High Speed Networks 25, 349-365 (2019)

. Harris, G.: Development /libpcapfileformat (mar 2011), https://wiki.wireshark.

org/Development/LibpcapFileFormat/

. Hong, S.S., Wu, S.F.: On interactive internet traffic replay. In: Valdes, A., Zamboni,

D. (eds.) Recent Advances in Intrusion Detection. pp. 247-264. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

. Kshirsagar, D., Kumar, S.: Identifying reduced features based on ig-threshold for

dos attack detection using part. In: Hung, D.V., D “Souza, M. (eds.) Distributed
Computing and Internet Technology. pp. 411-419. Springer International Publish-
ing, Cham (2020)

. de Lima Filho, F.S., Silveira, F.A.F., de Medeiros Brito Junior, A., Vargas-Solar,

G., Silveira, L.F.: Smart detection: An online approach for dos/ddos attack de-
tection using machine learning. Security and Communication Networks 2019,
1574749:1-1574749:15 (2019)

. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion de-

tection systems: A survey. Applied Sciences 9(20), 4396 (Oct 2019)

Mantas, G., Stakhanova, N., Gonzalez, H., Jazi, H., Ghorbani, A.: Application-
layer denial of service attacks: Taxonomy and survey. International Journal of
Information and Computer Security 7, 216 (01 2015)

Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw- nbl5 network data set). 2015 Military Communications
and Information Systems Conference (MilCIS) pp. 1-6 (2015)

Purwanto, Y., Kuspriyanto, Hendrawan, Rahardjo, B.: Traffic anomaly detection in
ddos flooding attack. In: 2014 8th International Conference on Telecommunication
Systems Services and Applications (TSSA). pp. 1-6 (2014)

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: Proceedings of the 4th
International Conference on Information Systems Security and Privacy - Volume
1: ICISSP,. pp. 108-116. INSTICC, SciTePress (2018)

14.

15.

16.

17.

Towards a Framework for Improving DoS Cybersecurity Experiments 15

Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.: Toward developing a system-
atic approach to generate benchmark datasets for intrusion detection. Computers
& Security 31, 357-374 (05 2012)

Siam, Y.: Tcpreplay tool (dec 2013), https://tcpreplay.appneta.com/wiki/
tcpliveplay-man.html

Sikora, M., Gerlich, T., Malina, L.: On detection and mitigation of slow rate denial
of service attacks. In: 2019 11th International Congress on Ultra Modern Telecom-
munications and Control Systems and Workshops (ICUMT). pp. 1-5 (2019)
Taghavi Zargar, S., Joshi, J., Tipper, D.: A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks. IEEE Communications Sur-
veys & Tutorials 15, 2046 — 2069 (11 2013)

