
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTICE: This is a pre-peer reviewed version of a contribution published in Ana C. R. 
Paiva, Ana Rosa Cavalli, Paula Ventura Martins, Ricardo Pérez-Castillo, eds., Quality 
of Information and Communications Technology, QUATIC 2021, CCIS, volume 1439, 
by Springer International Publishing. The definitive authenticated version is available 
online via http://www.doi.org/10.1007/978-3-030-85347-1_19 
 



A Critique on the Use of Machine Learning on
Public Datasets for Intrusion Detection

Marta Catillo, Andrea Del Vecchio, Antonio Pecchia, and Umberto Villano

Dipartimento di Ingegneria
Università degli Studi del Sannio, Benevento, Italy

{marta.catillo,andrea.delvecchio,antonio.pecchia,villano}@unisannio.it

Abstract. Intrusion detection has become an open challenge in all the
latest ICT systems due to an ever-growing urge towards safety in present
day networks. Various machine learning-based methods have been al-
ready proposed for finding an e↵ective solution to detect and prevent net-
works intrusions. Many approaches, tuned and tested by means of public
datasets, capitalize around well-known classifiers, which often reach de-
tection rates close to 1. However, these results strongly depend on the
training data, which are not representative of real production network
environments and ever-evolving attacks. This paper is an initial explo-
ration around this problem. After training a classifier on the top of a
public intrusion detection dataset, the detector is tested against “held
out” data not used for the learning phase. The experiments presented are
focused on DoS attacks, and based on the CICIDS2017 dataset and on
data collected by emulation of common attacks. Overall, the figures gath-
ered confirm that results obtained in the context of synthetic datasets
may not generalize in practice.

Keywords: Denial of Service · machine learning · public intrusion datasets.

1 Introduction

The research community strongly relies on public intrusion datasets, such
UNSW-NB15 [15], NDSec-1 2016 [3] and CICIDS2017 [17], for designing, eval-
uating and comparing novel Intrusion Detection Systems (IDS). To this aim, a
large number of public datasets have been proposed over the past years [16].
Datasets provide ready-to-use network packets and labeled numeric records –
known as network flows– collected under normative operations and attack con-
ditions, which makes it straightforward to develop machine and deep learning

models for intrusion detection. Not surprisingly, the intersection of intrusion de-
tection and machine learning is an extremely hyped research topic. A pletora of
attack detectors have spread in the literature [12] [6]. Noteworthy, some of these
detectors achieve astonishing results. For example, solutions proposed in [9] and
[2] achieve an accuracy of 0.999 and 0.996 respectively. At the time being, intru-
sion detection would seem a perfectly solved problem with no room for further
improvements.



2 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

Most of the existing –and impressive– intrusion detection results hold just in
the context of the datasets that were used to obtain the results themselves. We
believe that the results obtained on the top of synthetic and “lab-made” attacks
(such as those provided by many public datasets around) cannot be generalized
to production networks. Synthetic intrusion datasets simply do not summarize
complexity and uncertainty of production networks, which is intertwined with
ever-evolving sophistication of the attacks, heterogeneous and non-stationary
workloads, configurations and defense mechanisms of real-life servers. In conse-
quence, an attempt to learn intrusion detectors on top of a public dataset may
lead to partial –if not incorrect– patterns, which cannot be used to drive general
and rigorous security claims on the e↵ectiveness of a given IDS technique. In our
opinion, the implications of using public datasets for advancing the state-of-the-
practice in intrusion detection and cybersecurity remain quite opaque.

This paper proposes an initial exploration of the proposition above with a
focus on the detection of Denial of Service (DoS) attacks. Detection is pursued by
capitalizing on network flows, which summarize the conversation between pairs of
endpoints, e.g., the attacker and the victim of a DoS attack, through quantitative
features, such as duration, number and length of packets and flag counts. We
leverage benign and DoS network flows both (i) available in CICIDS2017 and
(ii) obtained by direct emulation of DoS attacks against a victim server in a
controlled testbed. It is worth noting that CICIDS2017 is a public dataset that
is gaining increasing attention by the community; as such, it is strongly relevant
in the context of our work.

Our critique is based on a twofold experiment. First, we learn an intrusion
detector on the top of the flows of CICIDS2017, which encompasses benign traf-
fic and various types of DoS attacks and related tools, such as hulk, slowloris
and showhttptest. Second, we test the detector against “held-out”, i.e., not used
for learning, benign and DoS flows of CICIDS2017 and those gathered in our
testbed after the emulation of slowloris attacks (a specific type of DoS attack
available also in CICIDS2017). The e↵ectiveness of the detector is assessed with
the consolidated metrics of accuracy, precision, recall and F1 score. The de-
tector achieves 0.9991 accuracy when tested with CICIDS2017 data, which is
extremely high and consistent with existing literature. Surprisingly, the same
detector –instructed to detect a wider class of DoS attacks beside slowloris– per-
forms quite poorly, i.e., 0.821 accuracy, against a slowloris attack conducted in
our testbed; even much worse, it achieves only 0.257 detection accuracy for a
mitigated variant of slowloris –obtained by hardening the configuration of the
victim server through a defense module– being capable of significantly disrupt
operations in spite of the defense. Overall, the experiment indicates that results
obtained within the “ideal” world of a synthetic dataset may not generalize in
practice.

The rest of the paper is organized as follows. Section 2 presents related work
in the area. Section 3 describes the experimental testbed and how experiments
have been conducted. Section 4 provides an overview of the datasets available in



A Critique on the Use of Machine Learning on Public Datasets 3

this study. Section 5 presents the results and lessons learned from our experiment.
Section 6 concludes the paper and provide future perspective of our work.

2 Related Work

Nowadays intrusion detection datasets have become increasingly pervasive
among researchers and practitioners, due to their usability and availability. In
general, data play a key role for the validation of any intrusion detection ap-
proach. However, datasets composed of network packets or flows from real-life
environments are not easily available due to privacy issues. Therefore in recent
years public intrusion detection datasets have been widely used by the secu-
rity community with the aim of tuning and testing detection algorithms. The
majority of these datasets are generated in synthetic environments under nor-
mative conditions and di↵erent intrusion scenarios. They emulate real network
tra�c –at least in theory– and they do not contain any confidential data. Most
datasets are distributed as labeled network flows, organized in comma-separated
values files specially crafted to apply modern machine learning techniques. In
particular, each record is a flow and the label states if it is malicious or not.
Customarily, data are also distributed as Packet Capture (PCAP) files. These
files are an ordered collection of network packets originating from one or more
benign or malicious sources. The usability of any intrusion detection dataset
reflects its power to provide information necessary for training intrusion detec-
tion models e�ciently. This is confirmed by numerous literature solutions, which
capitalize around these datasets by achieving high level of accuracy and recall,
often close to 1.

The earliest e↵ort to create a public intrusion detection dataset was made
by DARPA (Defence Advanced Research Project Agency) in 1999 by providing
a comprehensive and realistic intrusion detection benchmarking dataset, named
KDD-CUP’99 1. It includes two weeks of attacks-free instances and five weeks of
attack instances that make it suitable for anomaly detection. Numerous intrusion
detection solutions have been tested using the KDD-CUP’99 dataset over the
last few decades, such as [20]. Howewer, although this dataset was an essential
contribution to the research on intrusion detection, its accuracy and capability
to consider real-life conditions have been widely criticized [14] [7]. This is also
true for the more recent NSL-KDD2 [19], a version of KDD-CUP’99 dataset with
duplicates removed and reduced in size. A public intrusion detection dataset that
has experienced strong popularity among the security world-wide researchers is
certainly CICIDS2017

3 [17]. Released by the Canadian Institute for Cyberse-
curity (CIC) in 2017, it simulates real-world network data (PCAPs) and uses the
tool CICFlowMeter [10] to extract key statistics on network connections in order
to produce labeled flows. Its Authors implemented a testbed framework with the
aim to generate benign and attack data systematically using di↵erent profiles.

1
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

2 https://www.unb.ca/cic/datasets/nsl.html
3 https://www.unb.ca/cic/datasets/ids-2017.html



4 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

Another recent public intrusion detection dataset is UNSW-NB15
4 [15], whose

synthetic network data were collected by the Australian Center for Cyber Secu-
rity (ACCS) by means of the IXIA Perfect-Storm tool5, used as a normal and
abnormal tra�c generator. It exploits the CVE vulnerability database6 to cre-
ate a modern threat environment. The dataset is accessible in comma-separated
values file and in PCAP raw format. Since the aforementioned datasets are gen-
erated in a synthetic environment, they might fail to represent real-life network
behaviors. An attempt to overcome this limitation is suggested by the Authors of
theUGR’16 dataset7 [13], proposed by the University of Granada. In particular,
this dataset is a collection of netflow traces representing four months of network
tra�c from an Internet Service Provider (ISP). UGR’16 includes unidirectional
flows, which identify both benign tra�c and attacks. Other known public intru-
sion datasets are NDSec-2016

8 [3], MILCOM2016
9 [4] and TRAbID

10 [21].
They are all accessible both as network flows and as raw PCAP and contain
di↵erent types of attacks. The interested reader is referred to refrence [16] for a
complete survey of existing literature on intrusion detection datasets.

It is worth noting that in the last few years works that look more critically
at these datasets have spread. In particular, some of them, such as [18], con-
sider the quality of the data by analyzing statistical flaws that might introduce
bias in the model training phase. Other papers, such as [5], analyze instead the
representativeness of the data contained in public intrusion detection datasets.
In reference [8] it is reported a detailed analysis that considers the majority of
public intrusion detection datasets issues. In particular, the Authors state that
public datasets don’t fit real-life conditions, and therefore the value of analysis
performed against them may be of questionable value.

Over the years, the usability of public datasets has fostered the spread of
machine-learning based intrusion detection systems tuned and tested on such
data. Frequently, intrusion detectors are implemented with well-known classi-
fiers, which are able to detect almost all the attacks contained in the dataset
used for the training phase. For example, a comparative analysis between dif-
ferent classifiers is reported in [1]. All algorithms are evaluated by means of
the CICIDS2017 dataset. In [9], instead, it is reported a feature reduction ap-
proach based on the combination of filter-based algorithms, namely InformatiIn
paron Gain Ratio (IGR), Correlation (CR), and ReliefF (ReF). The proposed
approach aims to reduce the number of features and exploits a rule-based classi-
fier called Projective Adaptive Resonance Theory (PART) in order to detect DoS
attacks. The Authors obtain 99.9593% accuracy with the CICIDS2017 dataset.
The solution proposed in [22] is Specifically focused on DoS detection; a neural-

4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/

5 https://www.ixiacom.com/products/perfectstorm
6 https://cve.mitre.org
7 https://nesg.ugr.es/nesg-ugr16/
8 https://www2.hs-fulda.de/NDSec/NDSec-1/Files/
9
https://www.netresec.com/?page=ACS_MILCOM_2016

10 https://secplab.ppgia.pucpr.br/?q=trabid



A Critique on the Use of Machine Learning on Public Datasets 5

network based approach relying on the implementation of a simple Multi-Layer
Perceptron is compared to the Random Forest technique. Again focused on DoS
detection is the paper [11], where well-known machine learning approaches (e.g.,
Näıve Bayes and Logistic Regression) are used to distinguish normative condi-
tions from malicious ones. In [2], instead, the Authors propose a method that ex-
ploits the Bayesian Regularization (BR) backpropagation and Scaled Conjugate
Gradient (SCG) descent backpropagation algorithm. The results are promising
for the detection of DoS attacks. In particular, the model achieves an accuracy
of 99.6% using Bayesian Regularization and of 97.7% in Scaled Conjugate Gra-
dient Descent. It is worth pointing out that all the aforementioned works achieve
encouraging results in terms of performance metrics such as accuracy and re-
call. However, all of them blindly use data and none of them make a speculative
analysis of the attacks considered during the experiments.

3 Experimental Testbed

The flows that we consider during the experimentation come from both the
DoS CICIDS2017 dataset, and from our testbed after the emulation of slowloris
attacks against a victim web server. In order to evaluate the progression and
the e↵ect of the emulated attack, we collect service metrics by monitoring the
victim. In the following we present the experimental environment and the data
used for our experiments.

3.1 Experimental Testbed

Our experiments were conducted on a private network infrastructure. The exper-
imental testbed consists of three Ubuntu 18.04 LTS nodes, equipped with Intel
Xeon E5-2650V2 8 cores (with multithreading) 2.60 GHz CPU and 64 GB RAM,
within a local area network (LAN). The structure of the testbed is sketched in
Fig. 1.

The “victim” node hosts an installation of Apache web server 2.4.29. This
server is a significant case study, due its wide use for hosting real-world sites
and web apps. Furthermore, it can fit a wide range of attack targets available in
public intrusion datasets. The Apache web server supports a variety of modules
–including security-related ones– that can be enabled by adjusting the config-
uration of the baseline server installation. In particular, for our case study, we
have selected mod reqtimeout. This module can mitigate some DoS attacks and
is typically enabled by default in the baseline server after installation from the
standard Ubuntu repository, which means that its disablement requires explicit
changes of the configuration by the user. In particular, it allows to set –according
to the environment and domain where the web server is deployed– minimum data
rates and timeouts for receiving HTTP request headers and body from clients.
These conditions need to be met in order to keep a connection open. If the lim-
its are violated, the connection is dropped and the server sends a 408 REQUEST

TIMEOUT error. We configured the mod reqtimeout according to the instructions



6 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

DoS

DoS
Tools

benign http
requests

DoS

server

attacker node

client node

pcap

Fig. 1: Experimental testbed.

from the Apache docs11. At any time, mod reqtimeout can be seamlessly enabled
or disabled by acting on the configuration and re-starting the web server.

The “attacker” node generates potentially dangerous DoS tra�c against
the victim server. Attacks are performed by means of the Slowloris tool (more
on this later). The attacker node runs also an instance of tcpdump, which is
used to capture the tra�c between the attacker and the victim in a pcap packet
data file. It is worth noting that the pcap file obtained after a given attack is
successively processed to obtain the network flows.

The “client” node hosts httperf12, which is a well-known load generator.
This tool makes it possible to set a desired level of workload by setting several
parameters. In our testbed, it is here to probe the web server by collecting several
convenient metrics that summarize its operational status.

Our experiments are performed according to the following schedule:

1. setup: boot of tcpdump and the web server;
2. metrics collection: start of httperf, which exercises the web server with

benign HTTP requests –referred to as load (L) in the following– and collects
service metrics during the whole progression of the experiment;

3. attack : execution of a DoS attack by means of a dedicated tool; the web
server is under both benign load and DoS tra�c;

4. experiment completion: shutdown of the attack tool, httperf, tcpdump and
web server, storage of the pcap packet data file, service metrics and event logs
for subsequent analysis. The pcap data file is processed to obtain network
flows, as previously mentioned.

11
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

12
https://github.com/httperf/httperf



A Critique on the Use of Machine Learning on Public Datasets 7

It is worth pointing out explicitly that, in order to consider independent
experimental conditions, between pairs of subsequent experiments we clear the
logs of the web server (i.e., access and error log), stop the workload generator,
attack scripts and the web server, and reboot the nodes. The web server is
operated with the default configuration –in terms of thread limits and maximum
workers– available after a typical installation of the web server (e.g., by means
of apt-get install apache2, pointing to the standard Ubuntu repository13).

4 Datasets

4.1 CICIDS2017

CICIDS2017
14 is a public dataset created in 2017 by the Canadian Institute

for Cybersecurity (CIC) [17]. It consists of benign tra�c synthesized by the
abstract behavior of 25 users, mixed with malicious tra�c from most common
attacks. In order to create the dataset, a laboratory environment with attacker
and victim networks has been set up. The dataset is delivered both as a set of
packet capture (pcap) files and bidirectional flow labeled format (csv). In the
latter format, each record is a labeled flow, obtained from the network tra�c by
means of the tool CICFlowMeter and identified by 85 features. These are mainly
network tra�c features (source IP, destination IP, source port, destination port,
protocol, etc.) along with the label, stating if the flow belongs to normal tra�c
or to an attack. The data capture period started at 9 a.m., Monday, July 3, 2017
and ended at 5 p.m., Friday, July 7, 2017, for a total of 5 days. Monday is the
“normal day” and contains only benign tra�c; In the morning and afternoon of
Tuesday, Wednesday, Thursday and Friday, in addition to normal tra�c, attacks
were performed belonging to the categories Brute Force FTP, Brute Force SSH,
DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS. DoS attacks, such
as hulk, slowloris and slowhttptest, belong to the capture of “Wednesday”,
i.e., the “DoS day”. In particular, the attacker was a Kali Linux node and the
victim an Ubuntu 16.04 system with an Apache web server. However, it is not
clear whether the Apache mod reqtimeout module was enabled or not at the
time the data were collected.

4.2 Slowloris data

All the attacks performed in our testbed were carried out by means of a publicly-
available DoS tool: slowloris. It accomplishes a DoS attack by sending slow
HTTP requests (slow DoS attacks) against a victim server. This category of
attacks uses low-bandwidth approaches, which exploit a weakness in the man-
agement of TCP fragmentation of the HTTP protocol. We launched this attack
by means of a well-known Python attack script15. In particular, this implements

13
http://it.archive.ubuntu.com/ubuntubionic-updates/main amd64 Packages

14
https://www.unb.ca/cic/datasets/ids-2017.html

15
https://github.com/gkbrk/slowloris



8 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

Fig. 2: Throughput of the web server during the progression of the Slowloris
attack (no defense experiment).

the slow DoS attack by sending incomplete HTTP requests. If the server closes
a malicious connection, this is re-established by keeping constant the total num-
ber of open connections. We gathered regular network tra�c and the attacks
pcap files as described in Section 3. In order to obtain network labeled flows the
pcap files obtained from the attack are successively processed by means of the
CICFlowMeter 16 tool. The attacks collected from our testbed are obtained in
two di↵erent operating conditions. In particular:

– NoDefense-TEST: data obtained by running the slowloris DoS tool
against the web server with no defense module in place;

– Reqtimeout-TEST: data obtained by running the slowloris DoS tool
after starting the web server with the Reqtimeout defense module enabled.

The duration of each experiment is 600 s; the web server is exercised with
a client load L = 1000 reqs/s by httperf during the entire progression of the
attack. It is worth pointing out that data collected within our testbed can be
considered as inferred data, since we also provide information on the e↵ectiveness
of the attack. In particular, Fig. 2 and Fig. 3 show the throughput (T), i.e.,
HTTP requests accomplished by the web server within the time unit measured in
reqs/s, during the progression of the attacks. Fig. 2 clearly shows the e↵ectiveness
of slowloris: the throughput (T) is almost zero for entire duration of the attack.
Fig. 3, instead, shows an interesting result. The slowloris attack still remains
e↵ective despite the Reqtimeout defense module. Except for few spikes, which
indicate a recovery of the server, very low values of the throughput (T) are
recorded for the entire duration of the attack. Therefore, we can state that even
the mitigated version of the attack is e↵ective. It is worth pointing out that, for
both cases, in attack-free conditions the throughput of the server is steady at
1000 reqs/s; on the contrary, it can be noted that the attack significantly impact
the throughput.



A Critique on the Use of Machine Learning on Public Datasets 9

Fig. 3: Throughput of the web server during the progression of the Slowloris
attack in case of defense (Reqtimeout experiment).

Fig. 4: IDS learning and evaluation framework.

5 Results

5.1 Data Preprocessing and Analysis Framework

As for any machine learning experiment, we preprocess the CICIDS2017 “Wednes-
day” file and our Slowloris data to make them suitable for the analysis. First,
we remove non-relevant or biasing features, i.e., timestamp and id of the flows,
source address and port, destination address and port, which leads to total 78 re-
maining features (label included). Moreover, it is worth noting that the presented
experiment refers to a binary classification scenario. As such, flows referring to
di↵erent types of attacks are considered as belonging to a unique general class
named ATTACK – encoded with the 0 numeric label; on the other hand, BENIGN
flows are assigned 1 as label.

Flows contained in the aforementioned CICIDS2017 “Wednesday” file are
split into three disjoint subsets used for the training, validation and test of
the IDS model. While splitting the file, we adopt a stratified sampling strategy
with no replacement, which means that (i) the ratio between benign and attack
classes of the original file is preserved in the output splits and (ii) each flow of the

16 https://github.com/ahlashkari/CICFlowMeter



10 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

original file is assigned to a unique split. The original CICIDS2017 file contains
692,703 flows, where 1,297 were discarded due to the presence of malformed or
unsuitable values (e.g., “Infinity” or “NaN”). The remaining 691,406 total flows
are divided as follows:

– CICIDS-TRAINING: 70% of the total (i.e., 483,982) divided into 307,778
BENIGN and 176,204 ATTACK flows;

– CICIDS-VALIDATION: 15% of the total (i.e., 103,707), divided into
65,952 BENIGN and 37,755 ATTACK flows;

– CICIDS-TEST: 15% of the total (i.e., 103,707), divided into 65,952 BENIGN
and 37,755 ATTACK flows.

It should be noted that the three splits above sum up to 691,396, i.e., 10
flows less than the total. Occasionally, the chosen percentages did not return an
integer number of flows to be assigned to a given split; in such cases, the number
is rounded down to the highest preceding integer.

Fig. 4 provides a representation of the learning and evaluation framework on
the top of available datasets. CICIDS-TRAINING and CICIDS-VALIDATION
are used to learn the IDS model; CICIDS-TEST jointly with NoDefense-TEST
and Reqtimeout-TEST –our Slowloris dataset– represent the test sets used for
evaluating the IDS model. CICIDS-TEST, NoDefense-TEST and Reqtimeout-
TEST provide “held-out” benign and attack flows, i.e., not seen at all by the
IDS model during learning.

Evaluation is based on the typical metrics of accuracy (A), precision (P),
recall (R) and F-score (F). They are computed from the total number of true
negative (TN), true positive (TP), false negative (FN) and false positive (FP)
obtained by running the test sets against the IDS model. For instance, a TN is
a BENIGN flow of the test set that is classified BENIGN by the model; a FN is an
ATTACK flow of the test set that is deemed BENIGN by the model. Metrics are
computed as follows:

A =
TP + TN

TP + TN + FP + FN
P =

TP
TP + FP

R =
TP

TP + FN
F = 2 · P ·R

P +R
(1)

5.2 IDS Learning

Our experiment is based on a very popular machine learning technique, i.e.,
the decision tree. This technique is widely used in the literature to learn IDS
models because of its capability to infer explicable rules for classifying network
flows. The decision tree consists of predicates, i.e., nodes of the tree, which are
tested on a given input flow to be classified: based on the outcomes of the tests,
decision moves down through the tree until it is reached the class –either BENIGN
or ATTACK in our study– of the flow, i.e., a leaf of the tree.

The tree is learned from both BENIGN and ATTACK flows. Most notably, de-
cision tree is a supervised technique: in consequence, learning needs for the



A Critique on the Use of Machine Learning on Public Datasets 11

availability of the labels of the flows. We capitalize on the python implemen-
tation of the decision tree provided by the package scikit-learn

17. Accord-
ing to Fig. 4, we learn the decision tree with the flows in CICIDS-TRAINING
and CICIDS-VALIDATION. Learning is based on the hypopt

18 package. More
detailed, hypopt performs an exhaustive search over desired ranges and combi-
nations of the hyperparameters of the tree, such as the maximum depth of the
tree, which is the length of the path from the root to the furthest leaf of the
tree, or the minimum number of samples per leaf, i.e. the minimum number of
samples that needs to be collected by a leaf during the training phase, in order
to be accepted in the final configuration. During the search, hypopt (i) trains the
decision tree by means of CICIDS-TRAINING, and (ii) tests it with the flows
in CICIDS-VALIDATION. The learning stops when hypopt finds the optimal
combination of hyperparameters. We decided to run the optimizer on a small
set of hyperparameter, in order to reduce the search time. We considered the
already described maximum depth, minimum number of samples per leaf and
random state, a value set for reproducibility purposes, since some of the training
steps for the decision tree rely indeed on random splits of the training set.

5.3 Evaluation of the Detection Metrics

Firstly we test the decision tree with CICIDS-TEST. The obtained metrics
are shown in Fig. 5a. The most striking result is that all the metrics are above
0.99, i.e., almost perfect detection. In fact, this is the finding achieved by most
of the papers on IDSs when machine learning techniques are applied to public
intrusion datasets. The values of the metrics represent an “ideal” baseline. Our
critique is that such impressive results will likely not hold outside the public
dataset itself.

In order to explore this proposition, we test the model against the net-
work flows of slowloris obtained in our testbed. Fig. 5b shows the results for
NoDefense-TEST. It can be noted that the IDS model, although trained to
detect di↵erent types of DoS attacks –including slowloris– performs quite poorly.
For example, A and R drop from 0.991 (Fig. 5a) to 0.8210 and 0.7839, respec-
tively. This finding is quite surprising because the slowloris attack in NoDefense-
TEST is so obvious and proven to be 100% disruptive through all the duration
of the data collection, as clearly shown in Fig. 2 in Section 4. The IDS model
was purposely trained on a variety of DoS attacks to achieve more flexibility and
avoid that the model was “overfitted” only on slowloris data. However, according
to the outcome, embedding such attack knowledge in the model did not help to
achieve satisfactory results.

As for Reqtimeout-TEST in Fig. 5c, the evaluation metrics get even worse.
In this case accuracy and recall drop to 0.2573 and 0.2341, respectively. Reqtimeout-
TEST hinges on a mitigated variant of slowloris obtained by enabling the req timeout

Apache defense module. In principle, the reader may think that an attack done

17
https://scikit-learn.org/stable/

18
https://pypi.org/project/hypopt/



12 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

(a) CICIDS-TEST (b) NoDefense-TEST (c) Reqtimeout-TEST

Fig. 5: Evaluation metrics of the IDS model across the test sets.

under defense is harmless and not worthy to be detected; however, Fig. 3 in Sec-
tion 4 demonstrates that it is not the case for slowloris, which strongly disrupts
operations in spite of the defense. Our experiment indicates that a model trained
to detect a given attack might be ine↵ective to reveal a “weaker” variant of the
same attack.

5.4 Lessons Learned

There are several interesting lessons learned from our experience. We notice
that the “ideal” IDS model obtained in the context of its originating dataset
–CICIDS2017 in this study– does not generalize to a much more simple proof-
of-concept experiment. In consequence, it is hard to see if/how that IDS model
would generalize to a real-life production network a↵ected by all the sources
of complexity and uncertainty that do not exist in our small-scale, controlled,
testbed.

More important, a minor di↵erence with respect to the data gathering envi-
ronment of the public dataset, such as the enablement of a defense module, can
totally invalidate an IDS model inferred on the top of it. It must be noted that
defense modules are just a marginal example out of the large number of uncon-
trollable factors (e.g., sophistication of the attacks, workloads and configuration)
that characterize a production network. Public intrusion datasets provide only a
limited and incomplete view: our initial experiment demonstrates that one single
variation of the factors changes it all.

Overall, the implications of using public datasets for advancing the state-
of-the-practice of real-life networks and to drive general and rigorous security
claims on machine learning and IDS techniques remain quite opaque.



A Critique on the Use of Machine Learning on Public Datasets 13

6 Conclusion

Intrusion detection currently arouses great interest as a key part of a defense sys-
tem. The recent spread of machine learning techniques has boosted significantly
the performance of intrusion detection systems. Machine learning models can
learn normal and anomalous patterns from training data and generate classifiers
that are successively used to detect attacks. Most proposals in the literature
exploit public intrusion detection datasets and achieve detection rates that of-
ten are very impressive. However, these classifiers are hardly ever employed in
real-life networks as they could be ine↵ective under realistic tra�c conditions.

This paper has proposed an initial investigation of the ine�cacy of machine
learning on public datasets, with a focus on DoS attacks. In particular, we trained
an intrusion detector based on the flows of CICIDS2017 dataset, by considering
both benign and DoS attack tra�c. In order to validate the e↵ectiveness of
this detector, we tested it with “held-out” data, i.e., not used for learning. We
leveraged benign and DoS network test flows from the CICIDS2017 dataset
and from a testbed emulating a slowloris attack. The detector exhibits 99%
accuracy when tested with data from CICIDS2017. Notably, performance drops
against the slowloris attack conducted in our testbed. This indicates that
the “ideal” conditions that identify most intrusion detection datasets are not
generalizable to real-life environments. The finding contributes to establish new
knowledge in this area and poses novel open challenges.

Our results could be relevant both for the release of datasets and for the
implementation of machine learning algorithms, for the purpose of designing
increasingly robust and performing intrusion detection systems. In our future
work, we will extend the analysis by emulating other di↵erent DoS attacks. More
important, our long-term objective is to extend our study to other similar public
datasets and machine learning approaches. Our intention is also to analyze deep
learning techniques as far as their use on real-world data is concerned, since at
least in theory they could not be a↵ected by the issues pointed out in this paper.

References

1. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hier-
archical intrusion detection system based on decision tree and rules-based models.
In: 15th International Conference on Distributed Computing in Sensor Systems
(DCOSS). pp. 228–233 (2019)

2. Ali, O., Cotae, P.: Towards DoS/DDoS attack detection using artificial neural
networks. In: 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Com-
munication Conference (UEMCON). pp. 229–234 (2018)

3. Beer, F., Hofer, T., Karimi, D., Bühler, U.: A new attack composition for network
security. In: 10. DFN-Forum Kommunikationstechnologien. pp. 11–20. Gesellschaft
für Informatik e.V. (2017)

4. Bowen, T., Poylisher, A., Serban, C., Chadha, R., Jason Chiang, C., Marvel, L.M.:
Enabling reproducible cyber research - Four labeled datasets. In: Proc. Military
Communications Conference. pp. 539–544. IEEE (2016)



14 M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano

5. Catillo, M., Pecchia, A., Rak, M., Villano, U.: A case study on the representa-
tiveness of public DoS network tra�c data for cybersecurity research. In: Proc.
International Conference on Availability, Reliability and Security. pp. 1–10 Art.
no. 6. ACM (2020)

6. Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-IDS
anomaly detector. Journal of High Speed Networks 25, 349–365 (2019)

7. Kayacık, G., Zincir-Heywood, N.: Analysis of three intrusion detection system
benchmark datasets using machine learning algorithms. In: Intelligence and Se-
curity Informatics. pp. 362–367. Springer Berlin Heidelberg (2005)

8. Kenyon, A., Deka, L., Elizondo, D.: Are public intrusion datasets fit for purpose
characterising the state of the art in intrusion event datasets. Comput. & Secur.
99, 102022 (2020)

9. Kshirsagar, D., Kumar, S.: An e�cient feature reduction method for the detection
of DoS attack. ICT Express (2021). https://doi.org/10.1016/j.icte.2020.12.006

10. Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani, A.A.: Characterization of Tor
tra�c using time based features. In: Proc. International Conference on Information
Systems Security and Privacy. pp. 253–262 (2017)

11. Lee, J., Kim, J., Kim, I., Han, K.: Cyber threat detection based on artificial neural
networks using event profiles. IEEE Access 7, 165607–165626 (2019)

12. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion de-
tection systems: A survey. Applied Sciences 9(20), 4396 (2019)

13. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Garćıa-Teodoro, P.,
Therón, R.: UGR’16: A new dataset for the evaluation of cyclostationarity-based
network idss. Comput. & Secur. 73, 411 – 424 (2017)

14. McHugh, J.: Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and System Security 3(4), 262–294 (2000)

15. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Military Communica-
tions and Information Systems Conference. pp. 1–6. IEEE (2015)

16. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of
network-based intrusion detection data sets. Comput. & Secur. 86, 147–167 (2019)

17. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intrusion
detection dataset and intrusion tra�c characterization. In: International Confer-
ence on Information Systems Security and Privacy. pp. 108–116. SciTePress (2018)

18. Silva, J.V.V., Lopez, M.A., Mattos, D.M.F.: Attackers are not stealthy: Statistical
analysis of the well-known and infamous KDD network security dataset. In: Proc.
Conference on Cloud and Internet of Things. pp. 1–8 (2020)

19. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the
KDD CUP 99 data set. In: Symposium on Computational Intelligence for Security
and Defense Applications. pp. 1–6. IEEE (2009)

20. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of
anomaly-based intrusion-detection methods. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 40(5), 516–524 (2010)

21. Viegas, E.K., Santin, A.O., Oliveira, L.S.: Toward a reliable anomaly-based intru-
sion detection in real-world environments. Comput. Netw. 127(C), 200–216 (2017)

22. Wankhede, S., Kshirsagar, D.: DoS attack detection using machine learning and
neural network. In: Fourth International Conference on Computing Communica-
tion Control and Automation (ICCUBEA). pp. 1–5 (2018)


