
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.



REST-based SLA Management for Cloud Applications

Alessandra De Benedictis
Università di Napoli Federico II,

DIETI,
Napoli, Italy

alessandra.debenedictis@unina.it

Massimiliano Rak
Seconda Università di Napoli,

DII,
Aversa, Italy

massimiliano.rak@unina2.it

Mauro Turtur, Umberto Villano
Università del Sannio,

DING,
Benevento, Italy

{mauro.turtur, villano}@unisannio.it

Abstract—In cloud computing, possible risks linked to avail-
ability, performance and security can be mitigated by the
adoption of Service Level Agreements (SLAs) formally agreed
upon by cloud service providers and their users.

This paper presents the design of services for the manage-
ment of cloud-oriented SLAs that hinge on the use of a REST-
based API. Such services can be easily integrated into existing
cloud applications, platforms and infrastructures, in order to
support SLA-based cloud services delivery.

After a discussion on the SLA life-cycle, an agreement
protocol state diagram is introduced. It takes explicitly into
account negotiation, remediation and renegotiation issues, is
compliant with all the active standards, and is compatible with
the WS-Agreement standard.

The requirement analysis and the design of a solution able
to support the proposed SLA protocol is presented, introducing
the REST API used. This API aims at being the basis for a
framework to build SLA-based applications.

Keywords-Cloud, SLA, WS-Agreement, REST, API

I. INTRODUCTION

In the last few years the cloud computing paradigm has
widely diffused, from computer scientists to simple comput-
ers users. Apart from single users, institutions have taken
great advantage from cloud characteristics such as rapid
deployment of applications, flexibility and reconfiguration
of employed resources, low or null start-up costs. On the
other hand, it is becoming apparent that the great potential
of this paradigm is partly underutilized, mostly because of
doubts regarding availability, performance and security.

As the cloud paradigm is founded on the provision of
everything as a service (from hardware resources to ap-
plications), the canonical way to mitigate possible risks is
negotiate a set of required non-functional properties (level of
Quality of Service, QoS) with the service providers. This is
done through the adoption of of Service Level Agreements
(SLAs), which serve as a means of documenting formally
the service(s), performance expectations, responsibilities and
limits between cloud service providers and their users [1],
[2], explicitly taking into account obligations, service pricing
and penalties in case of agreement violations. Relevant
issues to be taken into account for effective SLA use are
discussed in [3].

Currently the definition of SLA standards is an active field
of research [4], [5], but concrete results are available only
for SLA representation (e.g., WSAgreement [6], WSLA [7]),
and as concerns tools/environments for their management
(e.g., SLA@SOI [8], WSAG4J [9]).

The Authors of this paper are involved in a FP7-ICT
programme project (SPECS1) which addresses cloud secu-
rity through SLAs. The SPECS project intends to improve
the state-of-the-art in cloud computing security by creating,
promoting and exploiting a user-centric framework and a
platform dedicated to offer Security-as-a-Service using a
SLA-based approach, in particular with respect to negoti-
ation, continuous monitoring and enforcement [10], [11],
[12].

One of the key points of the SPECS project is the
provision of a solution for the management of the whole life-
cycle of SLA contracts. The design that will be presented
in this paper has a sligthly wider scope, as it stands as
a management solution for any type of cloud SLA, not
necessarily those linked to security, which are the main
object of the SPECS project. In particular, our proposal is
the design of a web service for the management of cloud
SLAs through a REST-based API.

The WS-Agreement Specification by the Open Grid Fo-
rum (from here onwards, WSAG) [6] defines a language
to specify SLAs, and a protocol for their creation based
on templates for the final agreements. We will adopt the
format for SLA defined by the WSAG, but with a focus on
cloud environments and security. This implies the use of an
agreement protocol state diagram built according to cloud
SLA standards, but enriched as compared as the original
WSAG specification. Our state diagram takes explicitly into
account phases like Negotiation and SLA Implementation, as
well as actions like remediation and re-negotiation, which
are neglected in WSAG.

Currently most implementations of WS-Agreement rely
on the canonical SOA approach based on SOAP web ser-
vices, the so-called WS-*. However, the use of RESTful
architectures is rapidly diffusing, promising higher perfor-
mance and better scalability [13]. As mentioned above, our

1http://www.specs-project.eu



solution is based on an open REST-based API. It is different
from existing work [14], as it is focused primarily on
cloud environments, and implements an expanded SLA state
diagram reflecting the state-of-the-art of SLA standards.

This paper will go on as follows. In the next section, we
present related work. Then the SLA life cycle is considered,
presenting an extended SLA state diagram. The requirements
of an API for SLA management are discussed in Section IV.
The complete description of our REST API is presented in
Section V. The paper closes with our conclusions and plans
for future research.

II. RELATED WORK

The definition of Service Level Agreement is an active
topic for standardization bodies, because they are at the
interface between cloud user needs and the services and
features that cloud service providers (CSPs) are able to
offer. At the state of the art, there are several different
proposals coming out from different institutions. The Eu-
ropean Commission has set up a dedicated Working Group
(CSIG-SLA) to address the SLA problem, in the context
of the EC directive on Unleashing the Cloud Computing
[15] and related activities. The first result obtained by this
group is a guideline for standardization bodies that outlines
how standards related to SLA should be organized, offering
examples of the key concepts to be considered [5].

A more advanced state of SLA standardization is offered
by ISO 19086 [4], which proposes a clear standard for SLAs
in clouds. The above cited standard introduces the main
concepts related to SLA, and examples of guarantees that
can be offered. However, their description is very general
and leads more to SLAs written in natural language than to
automated SLA systems based on machine-readable formats.

WS-Agreement [6], born in the context of grid computing
(which relies on a stable middleware, and on a well-defined
way of using services and representing resources), is the
only standard supporting a formal representation of SLAs
and a protocol that aims at their automation. The main limit
of such solution is that it was devised in a grid-oriented
technological context, and that it is not completely fit in
other contexts, such as clouds.

The majority of the cloud-oriented FP7 projects (Con-
trail2, mOSAIC3, Optimis4, Paasage5) are inclined to adopt
WS-Agreement representations, suitably adapted to the
cloud context. In one case (see the paper [14] mentioned
in the introduction), the implementation approach followed
is similar to the one proposed in this paper, in that a REST
API is developed to support the WS-Agreement protocol,
even if using the “traditional” WSAG state diagram and
with no particular support for clouds. The pros and cons

2http://www.contrail-project.eu
3http://www.mosaic-cloud.eu
4http://www.optimis-project.eu
5http://www.paasage.eu

of the adoption of a REST architecture [13] are discussed
in [16] and [17]. The extension of WS-Agreement to support
renegotiation is instead discussed in [18].

However, to the best of our knowledge, none of the main
commercial IaaS providers (Amazon, Rackspace, GoGRID,
...) currently offers negotiable SLAs. What they usually
propose is an SLA contract that specifies simple grants on
uptime percentage or network availability. Moreover, most of
the providers offer additional services (for example, Amazon
CloudWatch), which monitor the state of target resources
(i.e., cpu utilization and bandwidth). Open Cloud Engine
software like Eucalyptus, Nimbus, OpenNebula, also imple-
ment monitoring services for the private cloud provider, but
do not provide solutions for SLA negotiation and enforce-
ment. A survey of the SLAs offered by commercial cloud
providers can be found in [19].

III. THE SLA LIFE-CYCLE

According to current standards on cloud SLAs (WS-
Agreement [6], ISO19086 [4], . . . ), the SLA life cycle is
characterized by five phases (Figure 1), Negotiation, Imple-
mentation, Monitoring, Remediation and Renegotiation.

Figure 1. The SLA life cycle

During the Negotiation phase, a cloud service customer
and a cloud service provider carry out a (possibly) iterative
process aimed at finding an agreement that defines their
relationship with respect to the delivery of a service. The
agreement may specify both functional properties related to
the identification of the service, and non-functional proper-
ties such as performance or security. Negotiation typically
ends with the formal acceptance of an SLA (hereafter
referred to as “signature”) by both parties, and it is followed
by the implementation phase. During the Implementation,
the CSP provisions and operates the cloud service, but also
sets up and provides the customer with the processes needed
for the management and monitoring of the cloud service, the
report of possible failures and the claim of remedies.

After the implementation of an SLA, the Monitoring
phase takes place. If any SLA violation occurs, i.e., if one
of the agreed terms of the SLA is not respected, the cloud
service customer may be entitled to a remedy (Remediation
phase). Remedies can take different forms, such as refunds
on charges, free services or other forms of compensation.

Finally, during the Monitoring and/or Remediation phases,
either the cloud service customer or the cloud service



Figure 2. Refined SLA life cycle

provider may require a change in the SLA (e.g., if a service
provider permits variable terms). This may lead to a Re-
negotiation phase, changing the original SLA terms.

In Figure 2, we show an SLA state diagram that takes into
account the above presented phases and enriches them. In
particular, it introduces explicitly the concepts of SLA alert
and proactive reaction to prevent violations, and so enables
a full audit over the SLA evolution for the benefit of both
service customers and providers.

The UML state machine in Figure 2 outlines aspects
related to possible violations, pro-active reactions and re-
negotiations of the SLAs that are supported by state-of-the-
art standards. It should be pointed out that the proposed
diagram is compliant with the one proposed in the WS-
Agreement specification, while introducing some improve-
ments. Compared to our diagram, the WSAG “original”
diagram (Figure 3) hides the scheduling of the negotiation
process and the negotiation itself in the pending state (i.e., an
SLA is pending during all the negotiation process), while we
explicitly differentiate between these two states by introduc-
ing the negotiating state. Moreover, the pending state in the
WSAG diagram completely hides the Implementation phase,
while we make an explicit reference to the achievement of
the agreement, which is ratified through the signing of the
SLA and triggers the SLA implementation (signed state).
Once signed, and after that the Implementation has taken
place, the SLA enters the observed state, corresponding to
the Monitoring phase.

In the diagram proposed in Figure 2, we separately repre-
sent the management of SLA alerts and violations. During
the Monitoring phase, the cloud service provider may check

for deviations from the desired behavior that do not directly
cause the violation of an SLA, but that may likely induce it
in the near future, if not properly handled. In such situations,
the SLA is set in the alerted state, where a diagnosis activity
is performed to determine the root cause of the alert and
proper countermeasures are identified (e.g., a reconfiguration
of the service being delivered), which are later on enforced
while the SLA is in the proactive redressing state.

Once the countermeasures have been applied and the alert
is no longer active in the system, the SLA returns to the
observed state. If instead a violation occurs, and is detected
while in the observed state or even in the alerted state,
suitable remedies are applied in the remediating state, as
discussed earlier in this section.

During the Monitoring and/or Remediation phases, either
the customer or the provider may require a change in the
SLA. In order to represent this situation, we devised a
transition from the reaction macro-state (including both the
proactive redressing and remediating states) and from the
observed state, towards the re-negotiating state.

Finally, an SLA may enter the terminating state if (i) an
explicit termination request has been issued by either parties,
(ii) an agreement has not been found in the negotiation or
re-negotiation phases, (iii) a detected SLA violation implies
the termination of the SLA.

IV. REQUIREMENT ANALYSIS OF THE API FOR SLA
MANAGEMENT

In this section we discuss briefly the functional require-
ments that must be satisfied to enable the management of the
SLA life-cycle illustrated in Section III. The solution we aim
at designing must allow for the management of SLAs from



Figure 3. WS-Agreement State Diagram [6]

their negotiation (or re-negotiation) to their termination, by
supporting their implementation and by handling possible
alerts/violations that may arise during their monitoring.

The main design requirement is that all information re-
lated to SLAs and their state has to be stored in an SLA
repository, and that specific services should be available to
query and to update the contents of such repository. In the
presence of an alert or violation, the API should allow to
update the state of the involved SLAs.

The API to be designed should allow to create SLAs
(possibly by means of a template), to store them in an SLA
repository, to retrieve them based on their ID, and to get
other relevant information such as the list of possible states
that an SLA can traverse. It must allow the change of an
SLA that is in the Negotiation or Re-negotiation phase, and
the annotation of an SLA with meta-data and additional
information useful for auditing purposes.

The API has also to support the transition between two
states of the diagram (update of SLA state), and to handle
specific activities such as the signing of an SLA (which
includes a state update) and the management of events
related to alerts and violations. As discussed previously, such
events imply entering either the alerted or the violated states,
but also include the acquisition from the system of additional
information for the correct handling of the event.

V. A REST API FOR SLA MANAGEMENT

In this section we present the complete set of API calls
designed to meet the requirements discussed in Section IV
for the management of the SLA life-cycle. Such calls can
be easily integrated into existing cloud applications in order
to drive service delivery on the basis of the SLAs agreed
with service customers.

In his “Maturity Model” [20], Richardson classifies the
APIs for services on the web in three incremental maturity
levels, according to the support offered for URIs (L1), for
HTTP methods (L2), and for hypermedia (L3). Below these
levels (i.e., at L0), none of the them is supported. According
to the Maturity Model, RESTful APIs [21] require level L3
as a prerequisite [22]. At the state of the art, only few APIs

respect such requirement; the majority of the commonly
used ones is at L2. Our API sits at L2, since our design
addresses both the use of URIs (to identify the resources)
and the full semantic of HTTP methods (to operate on them).
We plan to introduce the hypermedia support in the next API
release.

In the next subsections, we first present both the REST
Resources our API accesses and manages, and then the
operations that it allows to perform on such resources.

A. SLA API: REST Resources

The SLA API we propose manages the following types
of resources:

• SLA: it identifies a WSAG Offer-compliant XML doc-
ument. Each SLA includes the following information:
(i) the current state of the agreement; (ii) the list of
occurred violations; (iii) the list of occurred alerts, and
(iv) the list of associated annotations;

• SLA template: it identifies a WSAG Template-
compliant XML document;

• SLA state: it identifies one of the possible SLA states
(see Section III);

• Alert: it identifies an alert;
• Violation: it identifies a violation;
• Annotation: it identifies an annotation.
Every resource may be represented both in XML

(application/xml mediatype) and in JSON
(application/json mediatype) format; the client
can negotiate the preferred one via HTTP headers. The
only exception is represented by the SLA resource, which is
available only in the XML format. We manage collections
of resources by means of a generic envelope for XML and
an array of elements for JSON. Inside the envelope/array,
each item of the collection is represented by its URL.

B. SLA API: REST URLs

A call to the REST API is identified by an URL and an
HTTP method, used to realize one of the CRUD operations
(Create, Read Update, Delete) on resources. The call URLs
use the cloud-sla base path, followed by the name of
the resource they operate on. Parts of URLs surrounded by
curly braces identify a variable string (usually an identifier).
If not otherwise specified, the client can request and send
resources both in XML and JSON format.

The main resources accessed and managed by our
API are SLAs, which can be reached through the
cloud-sla/slas URL. The following calls allow to
retrieve available SLAs, and to add new elements to the
collection of SLAs:

• /cloud-sla/slas
– GET: it returns the available collection of SLAs.

The result can be restricted (to perform a search
operation) by using a suitable query string.



– POST: this call adds a new SLA Offer to the
collection of SLAs, and returns the URL of the
created resource. The POST entity body has to
contain a valid SLA Offer in XML format. The
new SLA is created in the pending state. If no
errors occur the offer is scheduled for negotiation,
and the state evolves automatically to negotiating.

• /cloud-sla/slas/{sla-id}
– GET: it retrieves the SLA identified by the
sla-id variable. The SLA can be retrieved only
using the application/xml mediatype.

– PUT: it modifies the SLA content identified by the
sla-id variable. This call is allowed only while
in the negotiating or re-negotiating states.

Note that we do not provide a method to explicitly delete
an item from a collection since, for auditing purposes, we
assume that all the SLAs created are maintained in the
future, even in case of failed negotiation or termination.

In the following, we list the calls that have been designed
to perform specific actions on an SLA (identified by the
sla-id variable).

• /cloud-sla/slas/{sla-id}/state
– GET: it retrieves the current state of the SLA.
– PUT: it updates the state of the SLA according

to the value specified in the request entity body.
Possible values are the following:
⇤ sign: the SLA’s state evolves from negotiating

or re-negotiating to signed.
⇤ observe: the SLA’s state evolves from signed to

observed.
⇤ renegotiate: the SLA’s state evolves from

proactive redressing or remediating to re-
negotiating.

⇤ complete: the SLA’s state evolves from ob-
served to SLA completed.

⇤ terminate: a termination request is issued and
the SLA’s state is set to terminating. If no errors
occur, the state evolves automatically to SLA
terminated. The method invocation is allowed
only in the negotiating, re-negotiating, proactive
redressing, remediating or observed state.

⇤ remediating: the SLA’s state evolves from vio-
lated to remediating.

⇤ redressing: the SLA’s state evolves from alerted
to proactive redressing.

By accessing the base URL for SLA resources, it is
possible to reach additional resources related to the SLA,
such as alerts, violations and annotations (i.e., labels and
notes that customers and providers can associate to SLAs
for various purposes), by invoking the following calls:

• /cloud-sla/slas/{sla-id}/alerts
– GET: it retrieves the collection of the Alerts

associated to the SLA.

– POST: it allows to signal that an Alert occurred.
The method, if called in the observed state, sets the
SLA’s state to alerted, creates an Alert resource
associated to the SLA and returns the URL of
the created resource. Otherwise, the Alert is
embedded and stored in a new Annotation

resource for auditing purposes.
• /cloud-sla/slas/{sla-id}/alerts/{alert-id}

– GET: it retrieves the SLA Alert identified by the
alert-id variable for the SLA.

• /cloud-sla/slas/{sla-id}/violations
– GET: it retrieves the collection of the
Violations associated to the SLA.

– POST: it allows to signal that a Violation

occurred. The method, if called in the observed
or in the alerted state, sets the SLA’s state to vi-
olated, creates a Violation resource associated
to the SLA and returns the URL of the created
resource. Otherwise, the Violation is embed-
ded and stored in a new Annotation resource
for auditing purposes. The POST entity body has
to contain a valid Violation, both in XML or
JSON format.

• /cloud-sla/slas/{sla-id}/violations/{violation-id}
– GET: it retrieves the SLA Violation identified

by the violation-id variable for the SLA.
• /cloud-sla/slas/{sla-id}/annotations

– GET: it retrieves the collection of the
Annotations for the SLA.

– POST: it allows to create a new Annotation.
• /cloud-sla/slas/{sla-id}/annotations/{annotation-id}

– GET: it retrieves the SLA Annotation iden-
tified by the annotation-id variable for the
SLA.

Finally, in order to support the template-based SLA ne-
gotiation, as the one supported in WS-Agreement, the API
includes the following calls that make it possible to manage
SLA template resources:

• /cloud-sla/templates
– GET: it retrieves the collection of defined SLA

Templates.
– POST: it allows to create a new Template and

returns the URL of the created resource.
• /cloud-sla/templates/{template-id}

– GET: it retrieves the SLA Template identified
by the template-id variable.

Concurrency issues are addressed using the appropriate
HTTP headers: the server responds to GET requests with
the “Last-Modified” header, while the client has to perform
PUT operations adding the “If-Modified-Since” header.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a solution for SLA
management in clouds that relies upon a suitably defined
SLA life cycle supported by a REST API. The proposed
SLA life-cycle is based on current standards on cloud SLAs
and is compliant with the WS-Agreement specification, but
introduces some important enhancements. These are related
to the management of SLA alert and proactive reaction to
prevent violations, and enable a full audit on SLA evolution
for the benefit of both service customers and providers.

The implementation we offer for the proposed REST API
(SLA manager), able to support the proposed SLA life-cycle,
is available on line6 and can be easily integrated into existing
applications to enable the construction of software solutions
for orchestrating services based on SLAs.

The solution presented can be a basic buiding block of a
framework for SLA-based service management, being com-
pliant with current and evolving standardization outcomes
in this field. In the near future, we plan to integrate our
implementation of the proposed REST API with a simple
broker, in order to build up an SLA-based brokering service.
Moreover, we are also about to integrate our SLA manager
with monitoring and enforcement solutions able to enrich
the offered services according to the user requirements,
expressed at the time of SLA negotiation.

ACKNOWLEDGMENT

This research is partially supported by the grant FP7-ICT-
2013-11-610795 (SPECS)

REFERENCES

[1] Cloud Standard Customer Council - CSCC, “The CSCC
practical guide to cloud service level agreements,” April 2012.

[2] T. Trappler, “If it’s in the cloud, get it
on paper: Cloud computing contract issues,”
http://www.educause.edu/ero/article/if-its-cloud-get-it-paper-
cloud-computing-contract-issues, June 2010.

[3] A. L. Diaz, “Service level agreements in the cloud:
Who cares?” http://www.wired.com/2011/12/service-level-
agreements-in-the-cloud-who-cares/, december 2011.

[4] International Organization for Standardization, “ISO/IEC NP
19086-1. Information Technology–Cloud computing–Service
level agreement (SLA) framework and technology–Part 1:
Overview and concepts,” 2014.

[5] European Commission – C-SIG (Cloud Select Industry
Group) subgroup, “Cloud Service Level Agreement Standard-
isation Guidelines,” June 26 2014.

[6] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web
services agreement specification (WS-Agreement),” in Global
Grid Forum. The Global Grid Forum (GGF), 2004.

6https://bitbucket.org/specs-team/specs-sla platform-sla manager-sla-api

[7] A. Keller and H. Ludwig, “The WSLA framework: Specifying
and monitoring service level agreements for web services,”
Journal of Network and Systems Management, vol. 11, no. 1,
pp. 57–81, 2003.

[8] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann,
U. Winkler, and G. Zacco, “A framework for multi-level SLA
management,” vol. 6275, pp. 187–196, 2010.

[9] “Wsag4j project web site.” [Online]. Available:
http://wsag4j.sourceforge.net

[10] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano,
“Security as a service using an SLA-based approach via
SPECS,” in Proc. of CloudCom, 2013 IEEE 5th Int. Conf.
on, vol. 2, Dec 2013, pp. 1–6.

[11] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Pre-
liminary design of a platform-as-a-service to provide security
in cloud,” in CLOSER 2014 - Proc. of the 4th Int. Conf. on
Cloud Computing and Services Science, Barcelona, Spain,
April 3-5, 2014., 2014, pp. 752–757.

[12] M. Rak, J. Luna, D. Petcu, V. Casola, and U. Villano,
“Security as a service using an SLA-based approach via
SPECS,” in Proc. of Cloudcom, 2013, pp. 100–105.

[13] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000.

[14] R. Kübert, G. Katsaros, and T. Wang, “A RESTful implemen-
tation of the WS-Agreement specification,” in Proceedings of
the Second International Workshop on RESTful Design, ser.
WS-REST ’11. New York, NY, USA: ACM, 2011, pp. 67–
72.

[15] “Unleashing the potential of cloud computing in europe -
what is it and what does it mean for me?” [Online]. Available:
http://europa.eu/rapid/press-release MEMO-12-713 en.htm

[16] S. Weerawarana, “WS-* vs. REST: Mashing up the truth from
facts, myths and lies,” QCon San Francisco, 2007.

[17] C. Pautasso, “REST vs. WS-* comparison.” [Online].
Available: http://goo.gl/qnRmNZ

[18] S. Sharaf and K. Djemame, “Enabling service-level agreement
renegotiation through extending WS-Agreement specifica-
tion,” Service Oriented Computing and Applications, pp. 1–
15, 2014.

[19] L. Wu and R. Buyya, Performance and Dependability in Ser-
vice Computing: Concepts, Techniques and Research Direc-
tions. IGI Global, USA, 2011, ch. Service Level Agreement
(SLA) in Utility Computing Systems.

[20] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice,
Hypermedia and Systems Architecture. O’REILLY, 2010.

[21] R. T. Fielding, “REST APIs must be hypertext-driven,” 2008.
[Online]. Available: http://roy.gbiv.com/untangled/2008/rest-
apis-must-be-hypertext-driven

[22] M. Fowler, “Richardson maturity model: steps
toward the glory of REST,” 2010. [Online]. Available:
http://martinfowler.com/articles/richardsonMaturityModel.html


