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Abstract—The number of papers on network intrusion de-
tection based on machine and deep learning is growing at
an unprecedented rate. Most of these papers follow a well-
consolidated pattern: (i) proposal of an intrusion detection
system based on machine (deep) learning, (ii) learning-testing
with one (more) public intrusion dataset(s), (iii) achievement
of outstanding detection performance. Is the intrusion detection
problem solved? Unfortunately, no. This paper shares a deep re-
flection on the major limitations of public intrusion datasets and
related machine learning experiments, which greatly diminish the
findings documented by the literature. At the end of the day, in
spite of the academic hype and the increasingly-complex machine
and deep learning exercises around, the role of public datasets
in advancing intrusion detection of real-world networks remains
questionable. The way existing intrusion datasets are collected,
released and used by the community should be approached
with extreme caution. This paper provides concrete hints for
the construction of future intrusion detection datasets and more
rigorous machine learning experiments.

Index Terms—deep learning, intrusion detection, NIDS, public
datasets, cybersecurity

I. INTRODUCTION

The body of scientific literature on machine learning (ML)
and deep learning (DL) applied to network intrusion detec-
tion systems (NIDS) is growing at an unprecedented rate.
Any simple Google scholar query for the titles including
“intrusion detection” and one of “machine” or “deep” re-
turns thousands hits. This ever-growing literature is pushed
by several factors, which include, but are not limited to (i)
availability of commercial and open source products (e.g.,
Netflow, Tranalyzer, CICFlowMeter) to transform computer
network traffic into ready-to-use flow records suited to ML
and DL, (ii) increasing number of public, flow-based, intrusion
detection datasets (e.g., UNSW-NB15, UGR’16, CICIDS2017)
and (iii) specialized hardware and deep learning frameworks
(e.g., Keras, TensorFlow and PyTorch). A wide community of
academics and practitioners — partially prompted by publish-
or-perish pressure — is conducting measurement studies at the
intersection of machine (deep) learning and NIDS.

The plethora of NIDS that keeps spreading every day
follows the typical pattern in Fig. 1: (i) proposal of an
intrusion detection system based on machine (deep) learning,
(ii) learning-testing with one (more) public intrusion dataset(s),
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Fig. 1. Typical pattern of a NIDS paper based on machine (deep) learning.

(iii) achievement of outstanding detection performance, e.g.,
recall-precision close to 1 (almost “perfect” detection). At
the time being, intrusion detection might seem a perfectly-
solved problem with no room for further improvements. Un-
fortunately, successful attacks reported every day by the news
suggest that the intrusion detection problem is still there. The
adoption of ML and DL for intrusion detection in real-world
production networks remains challenging [1]; for example,
deep models may misclassify many activities [2]. It is a fact
that scholars need data to develop novel NIDS proposals and
to test their validity. However, the rationale of using synthetic
intrusion datasets as a “surrogate” of actual network traffic and
potential intrusions — expecting that the outstanding detection
figures obtained on the datasets will transfer to real-world
environments — is just a hope.

This paper aims to share a deep reflection on the use of
public intrusion datasets and the findings inferred on the top of
them by means of machine (deep) learning. Notwithstanding
the academic hype around this topic, concrete advances in
NIDS clash with a tremendous number of flaws and limitations
that will be discussed in the following. In spite of the brilliant
ML and DL exercises around, the role of public datasets in
advancing the state-of-the-practice in NIDS is questionable.
The reflections presented in this paper are backed by well-
argued scientific insights based on concrete facts inferred from
existing intrusion datasets and related literature, and our direct
experience on the topic. The way existing intrusion datasets
are collected, released and used by the community should
be approached with extreme caution. This paper provides
concrete hints for the construction of future intrusion detection



datasets and more rigorous machine learning experiments.

Non-goals of this paper. This paper (i) is not a critique to
existing literature, (ii) is not an exhaustive list of problems and
best-practices, (iii) is not a data collection or experimentation
guideline. The problem is huge and fraught by many open
challenges; most of the items presented below are independent
areas meant to be investigated on their own. Rather, this paper
aims to start a constructive discussion on the topic and to make
both prospective authors and reviewers aware of the issues
pertaining to the use of synthetic data in ML(DL)-based NIDS.
The rest of the paper is organized as follows. Sect. II provides
some basic notions. Sect. III and IV address the problem both
from the datasets and ML (DL) perspective. Sect. V concludes
with our reflections on advancing knowledge on NIDS.

II. BASIC NOTIONS ON PUBLIC DATASETS

Public intrusion detection datasets [3] are typically made
of traffic data captured by tools, such as tcpdump and Wire-
shark, in a controlled environment that attempts to mimic the
behavior of a network in normal traffic conditions subject
to realistic attacks. Public datasets may be available in raw
format (e.g., pcap packet data files) or — more commonly
for ML and DL purposes — labeled comma-separated values
(csv) records of features. Records are linked to the notion
of network flow, which is a common abstraction in NIDS. A
network flow is an aggregation of packets exchanged between
a source computer and a destination across a network; a flow
of packets is logically equivalent to a “call” or a “connection”
according to the RFC 2722 [4]. A network flow is represented
by a flow record — often informally called network flow —
which holds the values of categorical and numeric features
that provide context data and summary statistics computed
from the headers of the packets pertaining to a flow. A recent
survey discusses the trade-off between packet- and flow-based
features and the implications in adversarial ML for NIDS [5].

There are different tools to generate flow records; however,
some of them (e.g., Netflow, Tranalyzer) are essentially ori-
ented to produce information useful for the computer networks
community and are not particularly suited to intrusion detec-
tion purposes. This is the reason for the widespread use of CI-
CFlowMeter [6] by the Canadian Institute for Cybersecurity
(CIC), whose characteristic is to complement the customary
information of each record (e.g., source and destination IP,
protocol and ports) with statistical timing information (e.g.,
mean and variance of forward/backward packet inter-arrival
times and of packets transferred per second). It is worth
noting that the timing information was originally intended to
recognize the type of encrypted flows [7], and that it turned
out to be useful for intrusion detection only later on.

In the last few years, the most commonly used flow-based
dataset for NIDS research has undoubtedly been CICIDS2017.
Its reference paper [8] currently (April 2023) scores more
than 2,300 Google scholar citations, which makes it among
the top-used datasets. In the NIDS “research market”, ready-
to-use pre-processed data — straightforwardly usable by ML
and DL practitioners — is a means to attract citations. This

is perfectly acceptable, provided that the data are extensively
validated (and fixed) before they are released to the public.
Unfortunately, CICIDS2017, as well as the younger brother
CSE-CIC-IDS2018 (less used at the moment), are fraught by
all sorts of problems. Even if other flow-based NIDS datasets
are available (e.g, UNSW-NBI15 [9] and UGR’16 [10]), in the
following the focus will be mostly on CICIDS2017 (due to its
massive use) with further insights on other datasets.

III. TYPICAL ISSUES OF PUBLIC INTRUSION DATASETS

Simplifications of the data collection environment.

Synthetic intrusion datasets can hardly summarize complexity
and uncertainty of real-world networks. The fact that the
datasets are inevitably constrained by the simplifications of
the specific network environment made at the time of the
capture (e.g., topology, network speed and traffic conditions)
is a major — and often neglected — reason for the difficulty to
port successful “lab-made” NIDS to real-world environments,
which include heterogeneous and non-stationary workloads.
To be readily used as a benchmark for intrusion detection
techniques and tools, a dataset should contain normal traffic
intertwined with correctly-implemented state-of-the-art attacks
representative of real-world network conditions.

Contemporaneity and effectiveness of the attacks.

CICIDS2017 is by now about seven years old, and — though
passed off in many recent papers as a “modern” dataset — the
attacks performed therein have little in common with the ever-
evolving sophistication of current network attacks. It is well-
known that benchmark datasets in NIDS remain valid over a
short time period and they quickly become obsolete [5], [11].
Even more important, it has been demonstrated that Denial of
Service (DoS) attacks of both CICIDS2017 and other public
traffic captures (ISCXIDS2012, NDSec-1 2016, MILCOM
2016 and SUEE 2017) are mostly ineffective against suitably-
configured and hardened web servers [12]. This leads to the
paradox in which many researchers claim they are able to
detect about 100% of attacks that have no impact or just a
sort of minor disturbance on real-world services.

Representativeness of the normal baselines.

CICIDS2017 contains normal traffic that simulates the behav-
ior of 25 users and a few protocols on an internal network;
there are examples of datasets that rely on simple traffic gen-
erators, such as httperf. The representativeness of the normal
baselines is crucial in ML and DL methods that aim to learn
the characteristics of the normal traffic in order to pinpoint
anomalies as an attack (such as semi-supervised learning
methods). The detection results depend on the baseline used,;
however, this problem is typically neglected.

Bugs of the feature extractor and incorrect flow records.

The extraction of flow records from packet captures is un-
doubtedly a difficult task. Only after a lustrum of “blind”
use of CICIDS2017 by NIDS researchers, a number of
studies have noted several major bugs and errors affecting
the ubiquitous CICFlowMeter, which led to incorrect flow



records of both CICIDS2017 and CSE-CIC-IDS2018 [13]-
[16]. Since its inception, CICFlowMeter has been around in
the public domain in many different versions due to supporting
libraries, correction of bugs, addition/deletion of features. This
is exacerbated by the lack of detailed documentation on the
tool configuration, even when it would be really necessary
(e.g., knowledge of the timeout after which flows are cut
and thus producing fragments of flows). At the time being,
we are aware of several, fixed, alternatives of CICIDS2017
and CICFlowMeter [17]-[19], which makes it hard to keep
experimentation up with these continuous changes.

Data Labeling.

Assembling ready-to-be-used datasets requires a significant
labeling effort, i.e., marking each record as either “normal”
or “attack” (and possibly the type of the attack). Due to the
huge volume of records, the task turns out to be difficult,
whether carried out manually or automatically. A common
solution is resorting to time-based labeling: the traffic between
the attacker and the victim during the interval of time of the
attack is marked as “attack”. This practice is dangerous, due
to the concrete chance to mark background normal traffic as
malicious, thus contaminating the dataset. The challenges of
labeling network traffic have been known since the early days
of NIDS; however, labeled-unlabelled data still represent an
open problem. For example, recent work has focused on traffic
labeling methods [11] and the utility of unlabelled data [20].

Class imbalance.

The management of the environment used to collect network
traffic for a dataset is a complex matter. For example, it is
hard to produce the same number of flow records for each
attack performed; some attacks, such as DoS, are inherently
much more voluminous than other types. Just to provide few
concrete examples, the original CICIDS2017 contains 230,124
DoS Hulk, 652 Web Attack XSS and 11 Heartbleed records
[13]; attack records of the more recent WUSTL-IIOT-2021
dataset for the industrial Internet of Things (IoT) — to mention
an adjacent domain suffering from similar issues — accounts
about 90% DoS data and less than 0.5% for other categories
(Backdoor, Command Injection) [21]. Class imbalance is a
long-standing debate in the community: while it mimics the
cardinalities of the classes in real-world settings, it is a major
threat to the evaluation metrics as described below.

IV. IMPLICATIONS FROM THE ML (DL) PERSPECTIVE

Attack-revealing features and ease of detection.

Flow records typically consist of many features (e.g., 83 in
the ubiquitous CICFlowMeter). Some features may trivially
expose the attacks to the ML (DL) model: this is the case
when there is a single attacker in the capture environment,
the attacks pass through the same frontier router or there is
a single victim: a trivial check of the IP addresses allows
to discriminate normal from attack flows. Unfortunately, it
is not rare to find manuscripts — submitted to peer review
— that propose ML(DL)-based detectors where all the features
are used as a whole with no critical reasoning at all. Even

when the “attack-revealing” features are removed, sometimes
the simplicity and regularity of normal baselines and attack
patterns allow one to detect the attack flows with simple
analysis techniques. This is discussed in [22], which claims
that a simple OneR classifier performs fairly well on many
academic datasets, and so that the use of DL is overkill.

’ Data partitioning.

ML-practitioners rely on different data splits for training,
validation and testing purposes. Random sampling with no
replacement would seem perfectly reasonable to obtain disjoint
data splits from a given dataset of records; however, it leads
to process and classify in an arbitrary order records that
indeed belong to a timestamped sequence (either normal or
attack). An issue arises when the DL model devised is a neural
network with memory, such as a recurrent neural network
(RNN) or long short-term memory (LSTM). Another risk is to
miss rare/unusual records from one (more) of the splits, thus
altering the representativeness. This problem is dealt with in
[23] with some possible solutions. Further challenges arise
if the objective of the research is the analysis of data drift
phenomena or advanced persistent threat (APT).

’ Unmotivated complexity.

Notwithstanding the large body of literature, the academic
solutions proposed seem to find no or very limited adop-
tion in actual production environments. Most — if not all
— recent proposals are based on the use of deep networks.
Among the highly-complex deep networks proposed so far for
intrusion detection are cascades-ensembles of Autoencoders
(AE), AE plus LSTM, Convolutional Neural Networks (CNN)
plus LSTM [24]-[26]. These solutions are characterized by
large footprint, high energy consumption, and fairly high
response times. But the most serious problems are learning
and tuning times. The learning and tuning of a deep network
for a given dataset may require weeks, if not months, of try-
and-retry experimentations. The time required grows with the
complexity of the solution. It would be great to know for
each solution proposed by the literature how long it takes
learning/tuning on a different dataset and why the proposing
authors did not opt for much more simple solutions instead of
“blindly” applying increasingly complex methods.

Use of the evaluation metrics.

Class imbalance may cause overestimating the actual
“strength” of NIDS. Let the confusion matrix in TABLE I,
where the normal records (negatives) are much lower than
attacks (positives), i.e., 100 vs 10,000, and half of the negatives
(50) are misclassified. The numbers return satisfactory recall
(R) and precision (P) of 0.99, but an unacceptable false
positive rate (FPR) of 0.50. Moreover, a high R may mask the

TABLE 1
DETECTION PERFORMANCE BIASED BY CLASS IMBALANCE.

label attack records Det x Dety

pred. | N P R =0.99 “A” 9,900 9,900 9,800
N |50 100 P =099 “B” 50 0 50

P |50 9,900 FPR = 0.50 “cr 50 0 50
total 100 10,000 total 10,000 9,900 9,900




fact that a detector, such as Detx in TABLE I, might detect
just the top-occurring attack class, i.e., “A”, but none of “B”
or “C”: the much better detector Dety — detecting attack “A”
fairly well and all of “B” and “C” — ends up with the same R of
Detx due to class imbalance. R and P alone (typically the only
metrics available in many papers) can be misleading and lead
to unfulfilled expectations: disclosing the FPR is necessary in
NIDS. For unbalanced test sets, detection performance can be
measured with P-R curves and AUPRC (area under the P-R
curve) [27]. An interesting option is evaluating NIDS based
on the ability to detect intrusions held-out from training [28].

Lack of transferability.

Most of the existing — and impressive — intrusion detection
results hold just on the top of the individual datasets that
were used to obtain the results themselves. In the context of
NIDS, transfer learning [29] might be used to learn a predictive
function for a “target” domain (real-world traffic) based on a
“source” domain (general benchmark network datasets) given
the same learning task (intrusion detection) in both domains.
While [5] indicates the use of transfer learning as a future
direction, recent work demonstrates that it is hard to transfer
NIDS knowledge, even across similar attacks [30]-[33].

V. ADVANCING NIDS: WHAT IT CAN BE DONE

Present-day success of artificial intelligence has shown that
machines do learn. But machines can also learn silly and
useless patterns, i.e., “garbage in — garbage out” (GIGO)
principle. The availability of ready-to-use datasets, environ-
ments and libraries where a few lines of Python code are
enough to build an ML model is a wonderful opportunity to
experiment. Unfortunately, sometimes detection performance
close to 100% is the outcome of toy examples. Advances of
scientific knowledge on NIDS can be achieved by approaching
dataset collection, release and usage with extreme caution.

Data Collection. In our opinion, traffic data collection
is — and will — remain the biggest problem. The network
environment is a moving target with a continuous shift in
the technologies, devices, protocols, appliances, traffic and
attacks (just to mention a few). Collecting realistic “lab-
made” traffic is hard; at the other end of the spectrum,
large-scale organizations and companies are constrained by
obvious concerns because connection meta-data (implicitly)
or traffic payloads (explicitly) carry confidential information.
Simplifications are unavoidable; however, the construction of
future intrusion detection datasets can advance along different
directions. For example, the network used should not be
too “basic” and the normal traffic should not be generated
through simplistic and repetitive traffic generators. There exist
frameworks to spot defects while generating datasets with
synthetic attacks [34]. Scholars should strive to emulate state-
of-the-art attacks, whose parameterization and timing must be
varied in order to elicit different attack variants, possibly under
different configurations and defenses of the victims. While
doing so, a reasonable balancing of normal and attack traffic
is also advised. Network traffic data should be accompanied
by detailed performance measurements of the victim during

the occurrence of both normative operations and attacks. This
item is missed by the current dataset proposals.

Data Release. Assuming traffic data is collected correctly,
any error during preprocessing- and release-related tasks can
invalidate the collection efforts and ends up with major damage
to the community. In this respect, there is a lot to learn
from the (in)famous history of CICFLowMeter—CICIDS2017.
As for the ubiquitous abstraction of flow record, feature
extraction should be carried out by leveraging well-tested and
documented tools. Another issue pertains to labeling, which
cannot be performed only on the basis of start—end time of the
attacks; in any case, the methodology used should be clearly
indicated to allow replication and verification. Datasets should
be accompanied by extensive documentation of network, OS,
application configurations and workload specifications in order
to allow third-party researchers to replicate the datasets by
mimicking the originating setups. A further problem is the
lack of a tool to perform the inverse operation of mapping the
flow records back to the network flows, so as to inspect the
corresponding packets from the originating captures. This is
of fundamental importance to help understand the nature of a
flow and to explain its classification. As far as we know, no
proposal currently available in the literature follows all these
hits; any attempt to move in the directions outlined above can
represent a steady contribution for the NIDS community.

Data Usage. Doing “mindful” ML and DL is a hard
task. Different from other domains, such as image/speech
recognition and natural language processing, NIDS pose a
number of unique challenges. In order to advance NIDS,
ML developers must thoroughly understand all the technical
information associated with the datasets, beforehand. Capi-
talizing on a few detection metrics, e.g., R and P, is not
enough without deeper investigation. There are papers that
achieve astonishing results just because the attacks-revealing
features were not discarded, i.e., the well-known “Clever
Hans” effect (the model produces the correct predictions based
on the wrong features). Chaining increasingly-complex deep
neural networks after networks must not be the rule, especially
when simpler approaches are possible; if not, the authors
should clearly provide information on the complexity and
time required to perform a new learning procedure. Choosing
the proper performance measures and analyzing them in-
depth, especially if the dataset is unbalanced. A special focus
should be on the reproducibility and transferability of the
models, by communicating the precise hyperparameters and
after testing on alternative datasets or, better, real-world data.
In this respect, authors must avoid using wrong/outdated
datasets. Unfortunately, it is very common to see IoT and,
more recently, 5G NIDS papers assessed through general
network datasets, such as CICIDS2017 (which surely it is not
an [oT/5G dataset); one more issue is the significant use of
NSL-KDD and KDD CUP’99, which are outdated.

As a side note, we believe the scientific community shares
some “responsibilities” on this. While the authors are tempted
to submit whatever comes to their minds, reviewers are respon-
sible to check what (and how) datasets are used, correctness



and quality of ML experiments; this is intertwined with the
need for profound changes in how NIDS papers are assessed.
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