
A Grid-Aware MIP solver: implementation and

case studies

Emilio P. Mancini
Università del Sannio,

Dipartimento di Ingegneria,
RCOST, Benevento, Italy
epmancini@unisannio.it

Sonya Marcarelli
Università del Sannio,

Dipartimento di Ingegneria,
RCOST, Benevento, Italy

sonya.marcarelli@unisannio.it

Igor Vasilyev
Institute of System Dynamics

and Control Theory,
SB RAS, Irkutsk, Russia

vil@icc.ru

Umberto Villano
Università del Sannio,

Dipartimento di Ingegneria,
RCOST, Benevento, Italy

villano@unisannio.it

March 18, 2007

Abstract

This paper presents a grid-enabled system for solving large-scale mixed
integer programming (MIP) problems. The system has been developed us-
ing Globus and MPICH-G2, and consists of two solvers and of an interface
portal. After a brief introduction to Branch, Cut and Price optimization
algorithms, the paper focuses on the system architecture, solvers and por-
tal user interface. The performance of system is measured and analyzed
on a small-scale grid environment consisting of three clusters on a campus
LAN.

1 Introduction

Most exact-solution approaches to Mixed Integer Programming (MIP) problems
are based on Branch and Bound, which solves optimization problems by implicit
enumeration of the solution space, partitioning it into a search tree. Unfortu-
nately, most of the practical MIP problems are NP-hard, and, in the worst
case, may require a search tree of exponential size. At least in theory, Branch
and Bound has a natural parallel structure. Therefore, the use of a sufficiently
high number of processors can make the solution of large-scale problems more
practical.

Among the possible implementation methods for Branch and Bound, a pow-
erful technique is Branch, Cut, and Price (BCP). BCP is an implementation of

1

Branch and Bound in which linear programming is used to derive valid bounds
during the exploration of the search tree. Even if the parallelization of BCP is
considerably more complex than basic Branch and Bound, currently there are
many well known parallel BCP implementations, along with frameworks that
allow quick development of customized code [1–8].

While parallel BCP solvers for “traditional” parallel systems are rather cus-
tomary, the potential of computing grids [9,10] seems to have been only partially
exploited at the state of the art [8, 11, 12]. This paper represents a step in this
direction, since it describes our experience in the development and performance
analysis of a grid-enabled platform for solving large-scale optimization problems.

The developed system is composed of two frameworks, BCP-G and Meta-
PBC, and of a web portal, SWI-Portal. BCP-G is a customized version of
COIN/BCP, an open source framework developed within the IBM COIN-OR
project [1]. The original COIN/BCP framework, based on the use of PVM
libraries [13], has been provided with a new MPI communication API able to
exploit the MPICH-G2 system, a grid-enabled MPI implementation [14, 15].
MetaPBC is instead a brand new framework that we are developing, and it
is based on a decentralized master/worker schema [16]. In order to make the
system as user-friendly as possible, we have also developed a web portal (SWI-
Portal) that manages users and jobs. All of them will be described here. The
paper also presents two example solvers that have been developed for testing
purposes, a solver for the p-median problem [17, 18], and a generic solver for
MIP problems.

In the next section, we introduce the Branch, Cut and Price algorithms
and the COIN/BCP framework. The architecture of our grid-enabled system is
presented in section 3. Section 4 describes several case studies and the obtained
performance results. The paper closes with the conclusions and a discussion on
our future work.

2 Branch, Cut and Price algorithms and
COIN/BCP framework

Branch and Bound algorithms are the most widely used methods for solving
MIP problems. A MIP problem is an optimization problem where the objective
function and the constraints are linear, and some of the variables are integer.
Branch and Bound is a strategy of exploration of solution space based on implicit
enumeration of solutions. Generally, it is an exact method, but it is also possible
to stop the search when some prefixed condition is reached, thus obtaining a
suboptimal solution. As is well known, Branch and Bound is made up of two
phases: a branching one, where the set of solutions are partitioned into disjoint
subsets, and a bounding one, where they are evaluated and the subsets not
including the optimal solution are deleted.

Branch and Cut algorithms use a hybrid approach, joining the Branch and
Bound method, used to explore the solution space, and the method of cutting

2

planes, used for the bounding phase. The cutting planes method finds the
optimal solution introducing a finite number of cuts, that is, inequalities satisfied
by all the feasible solutions, but not by the optimal current solution of the
problem with relaxed integrality constraints (LP relaxation) [19].

Branch and Price algorithms are instead based on column generation [20].
This method is used to solve problems with a very large number of variables. It
uses initially only a small subset of the problem variables and of the respective
columns in the constraints matrix, thus defining a reduced problem. In fact, in
the original problem, there are too many columns and great part of them will
have the respective variables equal to zero in an optimal solution.

Branch, Cut and Price joins the two methods used by Branch and Cut and
Branch and Price, producing dynamically both cutting planes and variables [1].

2.1 COIN/BCP

COIN/BCP is an open-source framework that implements the Branch, Cut and
Price algorithms for solving MIP problems [21]. It offers a parallel implementa-
tion of the algorithm using the message-passing library PVM (Parallel Virtual
Machine) [13]. Its functions are grouped in four independent computational
modules:

• Tree Manager (TM), which is the master process. It is responsible for the
entire search process, starts new processes and checks their status, sends
the problems to the slave processes and stores the best solutions. Finally,
it recognizes the end of the search, stopping all processes.

• Linear Programming (LP), which is a slave process. It performs the most
complex computational work, since it is responsible for the branching and
bounding phases. It uses a sequential solver to solve the LP relaxation.

• Cut Generator (CG), a slave process that creates globally-valid inequalities
not satisfied by the current solution of LP relaxation, sending them to the
LP that requested them.

• Variable Generator (VG), which performs the column generation. It cre-
ates variables with reduced costs, and sends them to the requested LP.

COIN/BCP implements a Branch, Cut and Price single-node pool algorithm,
where there is a single central list of candidate sub-problems to be processed,
owned by the tree manager. The modules communicate with each other by
exchanging messages through a message-passing protocol defined in a separate
communications API. The standard version of the framework exploits the PVM
run-time system. The first phase of our work was to implement a new parallel
interface based on MPI, in order to make it possible to use the framework in a
grid environment using the Globus Toolkit and MPICH-G2 [14,15].

3

User Interface
Portal

(SWI -Portal)
Scheduling

BCP-G

Computational Grid Infrastructure (Globus , MPICH -G2)

Monitoring

Accounting

Downloading

Meta-PBC

Generic MIP solver P-median solver

Application
Server

(Jakarta
Tomcat)

DB

Figure 1: System architecture

3 System description

The architecture of the grid-enabled platform developed is shown in Fig. 1. In
the figure, the upper layer is the portal interface, in the middle there are the two
solvers p-Median solver and MIP solver, which are implemented on the base of
BCP-G and Meta-PBC frameworks. All of which rely on the lower layer (the
Globus and MPICH-G2 frameworks).

3.1 BCP-G

BCP-G is a framework that we have implemented extending COIN/BCP. As
mentioned before, this required the development of a new communication in-
terface written in MPI. Our MPI communication interface is implemented by
the two classes BCP mpi environment and BCP mpi id, which manage the com-
munications between computational modules and the process ids, respectively.
In particular, we have added to the old system new functions, to initialize the
MPI environment and to determine the number of processes started by mpirun.
The MPI interface differs from the PVM one, since it includes no spawn func-
tionality to start dynamically new processes. If the number of started processes
is not equal to the number of processes requested by the user, an exception
is generated. This new interface, which is now integrated in the COIN-OR
framework [21], allows the use of this framework in a Globus grid environment
through the grid-enabled implementation of MPI, MPICH-G2. The user has
simply to write a Globus rsl script and, through the globusrun command, he
can launch the solver execution [22].

4

3.2 Meta-PBC

Meta-PBC is a parallel framework for solving MIP problems based on the
Branch and Cut algorithm. It is not the porting of existing software, but it
has been developed from scratch for an on-going research project. Our idea in
designing this library was to create a parallel implementation, which could take
advantage of the best sequential B&C solvers, such as the commercial solvers
ILOG CPLEX or Dash Optimization Xpress-MP. In Meta-PBC, these sequen-
tial solvers are therefore executed on a purposely-developed parallel layer, which
manages their workload. Meta-PBC consists of three modules: manager, worker
and tree monitor [16]. The manager is the master process. It is responsible for
the initialization of the problem, the I/O and manages the message handling
between the workers. The worker is a sequential solver of Branch and Cut with
some additional functionality to communicate in the parallel layer. The workers
communicate with each other through the parallel API to know the state of the
overall solution process. The tree monitor collects and visualizes information
about the search tree. The parallel interaction between modules is achieved by
a separate communication API in a way similar to COIN/BCP. In particular, an
abstract message environment is used, which can be implemented on the top of
any communication protocol supporting basic message passing functions. The
current version is implemented in MPI. The processes can thus be executed on
the Grid with MPICH-G2.

3.3 SWI-Portal

Figure 2: Use case diagram of the SWI-Portal.

The SWI-Portal (Solver Web Interface-Portal) is the interface to our system.
Users interact with the portal, and hence with the solvers and the grid, through
this interface. This allows them to submit a new job and to solve a problem, to
monitor their job, to view their output and to download the results. SWI-Portal
is implemented using the Java Server Pages technology (JSP). It consists of an
user interface and of a set of Java classes, wrapping of the most important and
useful Globus functions. Furthermore, it interacts with a database collecting
information on users, job and resources.

SWI-Portal is composed of four subsystems, which correspond to the four
use cases in Fig. 2. The account subsystem is responsible for managing user

5

(a) Scheduling subsystem

(b) Monitoring subsystem

Figure 3: Screenshots of the SWI-Portal.

6

PowerEdge
2450

fab4

Switch 3300 XM

SUPER
STACK

3C o m
7x 12x

19x
24x

1x 6x

13x
18x

SuperStack II

powercost

Campus
LAN

e-science

PowerEdge
2450

PowerEdge
2450

Switch 3300 XM

SUPER
STACK

3C o m
7x 12x

19x
24x

1x 6x

13x
18x

SuperStack II

PowerEdge
2450

Switch 3300 XM

SUPER
STACK

3C o m
7x 12x

19x
24x

1x 6x

13x
18x

SuperStack II

Figure 4: Grid environment

access in conjunction with the users DB. This subsystem allows a user to register
into the system, and to enter in the portal giving his login and password.

The scheduling subsystem (Fig. 3(a)) currently supports explicit scheduling;
the user has to specify the hosts on which he wishes to run his jobs. He must
insert a set of parameters describing his problem, and the scheduling system
invokes the Globus system to start the run. The subsystem also records infor-
mation about the runs in the database. It creates automatically the parameter
file necessary for the solver, using the information supplied by the user, and cre-
ates a Globus rsl script describing the running job. The grid layer is responsible
for the transfer of the files to all the hosts selected to execute the job.

From the pages of the monitoring subsystem (Fig. 3(b)), the user can check
the status of the search, and consult any other information about all the started
processes (such as output, error, rsl, and search tree). Users can download
through the Download Subsystem all information regarding their jobs and/or
cancel them from the server.

4 Computational experience and performance
analysis

4.1 Grid environment

We have configured an experimental grid environment made up of three Rocks
[23] clusters (fab4, e-science and powercost) at three different sites of the Uni-
versity of Sannio. Fig. 4 shows the architecture of our grid environment. The
clusters have a front-end with public IP and compute nodes with hidden IPs.

7

They provide 2.8 GHz Xeon processors, 1 GB RAM (four on fab4 and sixteen
on e-science, respectively) and 3.0 GHz Xeon processors, 2 GB RAM (44 on
powercost), as in Table 1. The intra-cluster connection is always GigaEthernet.
The three clusters are on the same campus LAN, and are currently connected
by a very slow connection, whose performance is discussed below. We installed
on each front-end the Globus Toolkit and the local Sun Grid Engine (SGE)
scheduler. The Sun Grid Engine is a distributed resource management (DRM)
software that provides functions such as job submission, monitoring and man-
agement, to utilize effectively the resources within the cluster. In particular,
the Globus gatekeeper uses the SGE scheduler as its job-manager.

powercost e-science fab4
Number of nodes 44 16 4
Processors type Xeon 3.0 MHz Xeon 2.8 MHz Xeon 2.8 MHz
Memory 2 GB 1 GB 1 GB

Table 1: Cluster system structure.

On each front-end, we installed also MPICH-G2, which allows inter-cluster
and intra-cluster communications. MPICH-G2, based on Globus Toolkit ser-
vices, allows to run MPI applications on a grid environment. It uses TCP
for inter-machine messaging and a vendor-supplied MPI (where available) for
intra-machine messaging. MPICH-G2 requires point-to-point communication
between the nodes where the jobs are running. Unfortunately, this requires
that all compute nodes have public IP addresses, but this is in contrast with a
classical cluster configuration like ours, where the compute nodes have private
IPs.

In order to solve this problem, and to use all the processors available, we
have chosen a solution based on the Realm Specific IP (RSIP) framework and
protocol [24]. RSIP is a network address translation technology that performs
a function similar to NAT. It allows the communication between two hosts
belonging to different address spaces. In our solution, we installed on each front-
end an RSIP server and on each compute node an RSIP client. For instance,
when a compute node of e-science (RSIP client) wishes to contact a node of
fab4, it queries the RSIP server for a port number and a public IP address.
The client then tunnels the packets to the RSIP server, which strips off the
tunnel headers and sends the packets to the target node. On incoming packets,
the RSIP server looks up the client IP, based on port number, adds the tunnel
header and sends them to the RSIP client.

In order to evaluate the detrimental effects on performance of the slow inter-
cluster LAN connection and of the overhead introduced by the RSIP protocol, we
measured the bandwidth and the transmission latency of the cluster connections
through the Intel MPI Benchmarks suite (IMB). This suite, also known as Pallas
MPI Benchmarks [25], provides a set of benchmark tests measuring the most
important MPI functions. In particular, we used the PingPong benchmark,

8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20000 40000 60000 80000 100000 120000 140000

M
B

/s

Message Length (Bytes)

with rsip
without rsip

Figure 5: Intercluster bandwidth with and without RSIP

 1

 10

 100

 0 20000 40000 60000 80000 100000

M
B

/s

Message Length (Bytes)

e-science
fab4

powercost

Figure 6: Intracluster bandwidth

9

which performs point-to-point communications, to measure the bandwidth of
the intercluster connection with and without RSIP (Fig. 5), and of the intra-
cluster interconnect on e-science, fab4 and powercost (Fig. 6). Table 2 shows
the transmission latency measured in all the previously-mentioned conditions.

Latency (µs)
inter-cluster with RSIP 1051423
inter-cluster without RSIP 971584
powercost 595
e-science 2067
fab4 1994

Table 2: Transmission latency

4.2 Case studies

BCP-G and Meta-PBC are general-purpose frameworks for solving MIP prob-
lems. To use them, it is necessary to implement some problem-specific functions
(see again Fig. 1). On the base of BCP-G, we have implemented a p-median
solver. The p-median problem is an NP-hard problem widely addressed in the
literature (see [18] for a survey). To solve this problem, we implemented a
Branch, Cut and Price algorithm with a simple procedure to choose the core
problem, a logical reduction test to fix some variables, a column and row gener-
ation algorithm to solve the LP relaxed problem and cutting planes. The details
of this approach are given in [17,18,26]. Moreover, we have implemented generic
MIP solvers based on both frameworks (BCP-G and Meta-PBC) to solve MIP
problems in general form. In the following we will consider only the MIP solver
based on BCP-G, as Meta-PBC framework development is still in progress.
Some preliminary results on Meta-PBC can be found in [16].

In the computational experiments with the MIP solver, we used instances
from the MIPLIB library [27], which, since its introduction, has become a stan-
dard test set and is commonly used to compare the performance of mixed integer
optimizers. In particular, we measured the performance of our grid solver on
two instances from MIPLIB, misc07 and stein45.

Measuring and analyzing the performance of a grid-enabled code is an inter-
esting matter, since the resulting figures are, at least in principle, widely affected
by the problem, by the code structure and communication patterns exploited,
by the grid hardware used, by the middleware and run-time systems coming
into play, and, above all, by the communication performance inside the clusters
making up the grid and among them. The results are inevitably configuration-
specific, but, in our opinion, can be used by developers tackling similar problems
on similar hardware for preliminary rule-of-thumb considerations.

The hardware configuration used for our tests is undoubtedly much less pow-
erful than state-of-art scientific grids. However, it is representative of computing

10

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(s

)

Processors

stein45 MPICH-P4
stein45 MPICH-G2
misc07 MPICH-P4
misc07 MPICH-G2

Figure 7: Comparison of MPICH-P4 and MPICH-G2 response times for the
stein45 and misc07 problems of the MIPLIB Library on a single cluster

hardware and networks widely available in academic and research environments.
In these environments, the natural question that arises is if it is convenient to
use jointly clusters of different speed and size, even if they are connected by slow
networks. The obvious alternative is to use only one cluster (possibly the most
powerful of them all) and to make rid of the overheads due to the grid infras-
tructure. Furthermore, assumed that the use of a small grid is convenient, how
can be the tasks allocated in order to maximize performance? The following
performance figures were selected among the results of our experimentations in
order to provide concise responses to the above problems.

The first issue considered is to detect possible performance losses due to the
use of a grid environment. We have compared the performance of our solver
in a single cluster using both MPICH-G2, suitable for the use in grids, and
MPICH-P4, the traditional MPI implementation for clusters based on the p4
communication library [28,29]. The results of our tests (Figure 7) clearly show
that MPICH-G2 introduces a negligible performance penalty in a single cluster.

However, the previous result is not sufficient to deduce that the use of a
grid environment, particularly on a slow and/or loaded network, is always sat-
isfactory as far as performance figures are concerned. We have measured the
completion time for the two problems (misc07, stein45) for increasing number
of tasks using two different scheduling policies. In the first case, as the degree of
parallelism rises the tasks have been allocated first inside powercost, the largest
cluster, and then outside, on the two small clusters e-science and fab4. In the
second case, instead, the tasks have been allocated first on the small clusters,

11

 1

 10

 100

 1000

 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(s

)

Processors

powercost e-science fab4

stein45
misc07

Figure 8: Response times for the stein45 and misc07 problems on a variable
number of processors

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
pe

ed
-U

p

Processors

powercost e-science fab4

stein45
misc07

Figure 9: Speedup for the stein45 and misc07 problems

12

 1

 10

 100

 1000

 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(s

)

Processors

fab4 e-science powercost

stein45
misc07

Figure 10: Response times for the stein45 and misc07 problems using an alter-
nate scheduling policy

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

S
pe

ed
-U

p

Processors

powercoste-sciencefab4

stein45
misc07

Figure 11: Speedup for the stein45 and misc07 problems using an alternate
scheduling policy

13

and then on the large one. The response times and the measured speedups
are presented in Figures 8-10 and 9-11, respectively. For different input data,
the performance behavior has turned out to be very similar. These additional
results are not reported here for brevity’s sake.

The apparently “strange” result obtained is that in both cases, from about
forty processors onwards, the use of additional processors does not involve any
significant gain in performance. As this is independent of the allocation policy, it
is inevitably due to the centralized approach used by our solver. As parallelism
degree increases, the master process becomes a bottleneck and the use of further
processors is insignificant, or even detrimental. However, it should also be noted
(please see Figg. 8 and 10 for a comparison) that the two scheduling policies do
not lead to the same performance results, as the use of the larger cluster first
allows to obtain much lower response times.

The communication pattern adopted by the solver throughout the compu-
tation is master/slave. All data are transferred between master and slaves (in
the two directions) through point-to-point communications, using standard send
and receive. For the two problems that are the object of our tests, the amount
of the data globally exchanged by the master during one run increases with the
number of slaves, from a minimum of about 20 MB (1 slave) to a maximum
of about 30 MB (63 slaves), and it is equally shared among the slaves. Com-
munication time unbalance is only due to possible differences in communication
channels. In our tests, we have found that the slaves on the slow network spend
about 80% of their total execution time in communication. This figure has to
be compared to the 5% of total execution time spent by the slaves on “fast”
networks.

The conclusions that can be drawn from our tests are:

• the availability of parallel machines should not lead to the misplaced belief
that every parallel code lends itself well to its use on hundreds of processors
or more. Parallelization strategies that are successful for a reduced number
of processors (e.g., master/slave) often turn out to be inadequate even on
medium-sized parallel machines.

• the possibility to use several parallel machines connected in a grid does
not come for free. Grid management and data transport introduce over-
heads, but they typically are fairly limited. However, their impact on
performance has to be properly evaluated.

• the best option to execute low-parallelism applications is obviously the
use of a single large cluster. When this is not possible, the use of small
machines arranged in a grid is not so bad, even on a slow network, as
documented by the speedups shown in the two sections of Fig. 11 on the
left.

14

5 Related work

In the last years, many software packages implementing parallel branch and
bound have been developed. SYMPHONY [1] is a parallel framework, similar
to COIN/BCP, for solving mixed integer linear programs. COIN/BCP and
SYMPHONY are combined in a new solver under development, ALPS [2]. Some
other parallel solver are PUBB [3], PPBB-Lib [4] and PICO [5]. PARINO [6] and
FATCOP [7,8] are generic parallel MIP solvers, and the second one is designed
for grid systems.

The grid portal allows users to access grid facilities by a standard Web
Browser. A grid portal offers an user interface to the functionalities of a grid
system. Currently there are many grid portals, including the Alliance Portal
[30], the NEESgrid Portal [31], the Genius Portal [32] and the IeSE Portal
[33]. Also, there are many grid portal development frameworks including the
Gridsphere Portal [34], the GridPort Portal [35], the Grid Portal Development
Toolkit (GPDK) [36] and the OCGE Portal Toolkit [37].

The literature dealing with the management and the performance of MPI
applications in grid environments made up of private IP clusters is relatively
limited. Park et al. [38] present MPICH-GP, an extension of MPICH-G2 for
supporting Private IP, whereas Velusamy et al. [39] describe a solution based
on IMPI standard with Network Address Translation mechanism and Das et
al [24] propose a solution based on RSIP. Papers on similar topics are written
by Heymann et al. [40] and Choi et al. [41]. Chen and Shmidt [42] present
a performance analysis on hierarchical grid system with different bandwidths
between clusters.

6 Conclusions and future work

In this paper, we have presented a grid-enabled system made up of two solvers
and a portal interface for solving large-scale optimization problems. Moreover,
we have described the configuration of our experimental grid environment, which
is made up of three clusters located in a campus LAN. We have discussed the
problems encountered using MPICH-G2 in such environment, where the com-
pute nodes have hidden IPs, showing the solution based on RSIP and its perfor-
mance evaluation. The obtained results show that our system can be success-
fully used in low-medium parallelism environments (tens of processors), whether
made up of a single cluster or of multiple small systems arranged in a grid.

In our future work, we wish to change the architecture of the solver system
and to adopt a decentralized approach. The idea is to divide the search tree
in many sub-trees and assign one of them to each cluster, which will solve it
individually. In this way, the degree of parallelism that could be successfully
exploited in a grid should make the system fit also for use in medium-high
parallelism computing environments.

As regards the SWI-Portal, we will extend its functionalities adding a system
for monitoring available resources and implicit scheduling. Implicit scheduling

15

will make the system capable of choosing automatically the best set of hosts
where to submit the user’s job.

References

[1] T.K. Ralphs, L. Ladanyi, and M.J. Saltzman. Parallel Branch, Cut, and
Price for Large-Scale Discrete Optimization. Mathematical Programming,
98:253–280, Sep 2003.

[2] T. K. Ralphs, L. Ladanyi, and M. J. Saltzman. A library hierarchy for im-
plementing scalable parallel search algorithms. Journal of Supercomputing,
28(2):215–234, 2004.

[3] Y. Shinano, M. Higaki, and R. Hirabayashi. Control schemas in a general-
ized utility for parallel branch and bound. In Proc. of the 1997 Eleventh In-
ternational Parallel Processing Symposium, Los Alamitos, CA, 1997. IEEE
Computer Society Press.

[4] S. Tschoke and T. Polzer. Portable Parallel Branch-And-Bound Library
PPBB-Lib User Manual. Department of computer science Univ. of Pader-
born, Nov 1996.

[5] J. Eckstein, C.A. Phillips, and W.E. Hart. Pico: An object-oriented frame-
work for parallel branch and bound. Technical report, Rutgers University,
Piscataway, NJ, Aug 2000.

[6] J. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, School
of Industrial and Systems Engineering, Georgia Inst. of Tech., Atlanta, GA,
1998.

[7] Q. Chen and M. C. Ferris. Fatcop: A fault tolerant condor-pvm mixed
integer programming solver. Technical report, University of Wisconsin CS
Department Technical Report 99-05, Madison, WI, 1999.

[8] Q. Chen, M.C. Ferris, and J.T. Linderoth. Fatcop 2.0: Advanced features
in an opportunistic mixed integer programming solver. Annals of Op. Res.,
(103):17–32, 2001.

[9] M. Baker, R. Buyya, and D. Laforenza. Grids and grid technologies for
wide-area distributed computing. Software: Practice and Experience Jour-
nal, 32:1437–1466, Nov 2002.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid. Enabling
Scalable Virtual Organizations. International Journal of Supercomputer
Applications, 2001.

[11] Kento Aida and Tomotaka Osumi. A case study in running a parallel branch
and bound application on the grid. In Proc. of the The 2005 Symposium
on Applications and the Internet (SAINT’05), pages 164–173, Washington,
DC, USA, 2005. IEEE Computer Society.

16

[12] Lucia M.A. Drummond, Eduardo Uchoa, Alexandre D. Goncalves, Ju-
liana M.N. Silva, Marcelo C.P. Santos, and Maria C. S. de Castro. A
grid-enabled distributed branch-and-bound algorithm with application on
the steiner problem in graph. Technical report, Universidade Federal Flu-
minense, Instituto de Computacao, Dec 2004. http://www.ic.uff.br/
PosGrad/RelatTec/Download/rt_02-05.pdf.gz.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sun-
deran. PVM 3 User’s Guide and Reference Manual, Sep 1994.

[14] L. Ferreira, B. Jacob, S. Slevin, M. Brown, S. Sundararajan, J. Lepesant,
and J. Bank. Globus Toolkit 3.0 Quick Start. IBM, Aug 2003.

[15] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Imple-
mentation of the Message Passing Interface. Journal of Parallel and Dist.
Comp., 63:551–563, May 2003.

[16] I. Vasil’ev and P. Avella. Computational experiments with pbc: Parallel
branch and cut library. In Proc. of XIII Conference “Optimization methods
and its applications”, pages 293–300, Irkutsk, Russia, Jun 2005.

[17] P. Avella and A. Sassano. On the p-median polytope. Mathematical Pro-
gramming, (89):395–411, 2001.

[18] P. Avella, A. Sassano, and I. Vasil’ev. Computational study of large-scale
p-median problems. Mathematical Programming, (available online), 2006.
http://www.optimization-online.org/DB_HTML/2003/03/625.html.

[19] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, 1999.

[20] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: column generation for solving huge integer
programs. Operations Research, 46:316–329, 1998.

[21] T.K. Ralphs and L. Ladanyi. COIN/BCP User’s Manual, Jan 2001. http:
//www.coin-or.org/Presentations/bcp-man.pdf.

[22] Globus Alliance. WS GRAM: Developer’s Guide, 2005. http://www-unix.
globus.org/toolkit/docs/3.2/gram/ws/developer.

[23] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. NPACI Rocks:
tools and techniques for easily deploying manageable Linux clusters. Con-
currency and Computation: Practice and Experience, 15:707–728, Apr
2003.

[24] D. Das, R. Sabharwal, S. Saraswati, P. N. Anantharaman, and J. Oh. A
network architecture for enabling execution of mpi applications on the grid.
International Journal of Information Technology, 11(4):74–83, 2004.

17

[25] Intel MPI benchmarks (formally known as Pallas MPI Benchmarks),
2006. http://www.intel.com/cd/software/products/asmo-na/eng/
cluster/clustertoolkit/307696.htm.

[26] P. Avella and A. Sforza. Logical reduction tests for the p-median problem.
Annals of Operations Research, (86):105–115, 1999.

[27] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated
mixed integer programming library MIPLIB 3.0. Optima, (58):12–15, 1998.

[28] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, September 1996.

[29] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division,
Argonne National Laboratory, 1996. ANL-96/6.

[30] Alliance Portal Project. Scientific Portals. Argonne National Labs,
Nov 2002. http://www.extreme.indiana.edu/alliance/docandpres/
SC2002PortalTalk.pdf.

[31] George E. Brown. Towards a Vision for the NEES Collaboratory. NEES
Consortium Development Project, Oct 2002. http://www.curee.org/
projects/NEES/docs/outreach/VisionWhitePaperV3.pdf.

[32] R. Barbera, A. Falzone, and A. Rodolico. The genius grid portal. In Proc.
of Computing in High Energy and Nuclear Physics, pages 24–28, La Jolla,
California, Mar 2003. https://genius.ct.infn.it.

[33] K. Kleese van Dam, S. Sufi, G. Drinkwater, L. Blanshard, A. Manandhar,
R. Tyer, R. Allan, K. O’Neill, M. Doherty, M. Williams, A. Woolf, and
L. Sastry. An integrated e-science environment for environmental science.
In Proc. of Tenth ECMWF Workshop, pages 175–188, Reading, England,
2002.

[34] Jason Novotny, Michael Russell, and Oliver Wehrens:. Gridsphere: An
advanced portal framework. In Proc. of 30th EUROMICRO Conf., pages
412–419, Rennes, Fr., Aug 2004. IEEE. http://www.gridsphere.org/
gridsphere/wp-4/Documents/France/gridsphere.pdf.

[35] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller, and D. Sutton.
The gridport toolkit architecture for building grid portals. In Proc. of
the 10th IEEE International Symp. on High Perf. Dist. Comp., Aug 2001.
http://gridport.net.

[36] Jason Novotny. The grid portal development kit. Grid Computing, pages
657–673, May 2003. http://doesciencegrid.org/projects/GPDK.

18

[37] M P Thomas, J Burruss, L Cinquini, G Fox, D Gannon, L Gilbert, G
von Laszewski, K Jackson, D Middleton, R Moore, M Pierce, B Plale,
A Rajasekar, R Regno, E Roberts, D Schissel, A Seth and W Schroeder.
Grid portal architectures for scientific applications. In Scientific Discovery
Through Advanced Computing (SciDAC 2005), pages 596-600, San Fran-
cisco, CA, USA, Jun 2005. Journal of Physics Volume 16, 2005.

[38] Kumrye Park, Sungyong Park, Ohyoung Kwon, and Hyoungwoo Park.
MPICH-GP: A private-ip-enabled mpi over grid environments. In Proc.
of Second International Symposium on Parallel and Distributed Processing
and Applications (ISPA04), pages 469–473, Hong Kong, China, Dec 2004.

[39] V. Velusamy, P. Bangalore, and P. Raman. Communication strategies
for private-ip-enabled interoperable message passing across grid environ-
ments. In Proc. of First International Workshop on Networks for Grid Ap-
plications, San Jose, CA, Oct 2004. http://www.broadnets.org/2004/
workshop-papers/Gridnets/Velusamy_V.pdf.

[40] Elisa Heymann, Miquel A. Senar, Enol Fernández, Alvaro Fernández, and
José Salt. Managing mpi applications in grid environments. In Marios D.
Dikaiakos, editor, Grid Computing: Second European AcrossGrids Confer-
ence, Lecture Notes in Computer Science, volume 3165, pages 42–50, Jan
2004.

[41] Siyoul Choi, Kumrye Park, Saeyoung Han, Sungyong Park, Ohyoung Kwon,
Yoonhee Kim, and Hyoungwoo Park. An nat-based communication relay
scheme for private-ip-enabled mpi over grid environments. In Proc. of Inter-
national Conference on Computational Science (ICCS04), pages 499–502,
Krakóv, Polland, 2004.

[42] Chunxi Chen and Bertil Schmidt. Performance analysis of computa-
tional biology applications on hierarchical grid systems. In Proc. of 4th
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 2004), pages 426–433, Chicago, Illinois, USA, Apr 2004. IEEE
Computer Society.

19

