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Abstract: Network intrusion detection systems (NIDS) play a key role for cybersecurity. Most of the times, NIDS
are built on machine learning/deep learning (ML/DL) models that are trained and tested on public intrusion
detection datasets. This paper presents the novel USB-IDS-TC dataset, conceived to explore the dependence
of ML/DL-based NIDS on the network used to collect the training traffic data. In this new publicly-available
dataset, DoS attacks have been conducted in different network scenarios, in the belief that the network has a
non-negligible effect on the detection capability of the NIDS as indicated by our initial analysis. Differently
from existing datasets that collect the data in a single scenario, USB-IDS-TC allows studying the dependence
of the attacks, traffic features and ML/DL models on the network, in order to strive for generalizable and
widely-applicable NIDS.

1 INTRODUCTION

In the desperate and presumably endless struggle
against network hackers and misusers, network intru-
sion detection systems (NIDS) currently play a key
role. The detection of potentially dangerous network
activity is canonically carried out by means of pol-
icy rules and signatures based on known attacks. Un-
fortunately, this requires frequent signature updates
and is mostly ineffective against never-seen-before at-
tacks (0-day attacks). This is the primary reason for
the blossoming of an ever-increasing body of research
on machine learning/deep learning (ML/DL) detec-
tors, which aim to infer the class of network traffic
or to detect anomalies by comparing the network traf-
fic to a legitimate baseline. Whenever a significant
difference is detected, an alert is raised. The hope of
the scientific community working on this topic is that
anomaly-based detectors will be able to detect also 0-
day attacks, as they should deviate from normal net-
work traffic.

Most of the times, ML/DL NIDS are trained and
tested on public intrusion detection datasets. As a
matter of fact, public datasets, such as KDD-CUP’99
(Özgür and Erdem, 2016), UNSW-NB15 (Moustafa
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and Slay, 2015), NDSec-1 2016 (Beer and Buehler,
2017), CICIDS2017 (Sharafaldin et al., 2018), and
many others (Ring et al., 2019) have become the
de facto standard benchmarks for evaluating novel
NIDS techniques. The wide availability of intru-
sion datasets, together with the rapid advancement
of deep learning frameworks has led to the emersion
of numerous attack detection methods in the litera-
ture. Notably, some of these detectors achieve highly
promising detection rates, approaching 100% on pub-
lic datasets. It has been argued elsewhere that many
studies leveraging public datasets for NIDS research
tend to “blindly” trust the data without considering
the representativeness of the network traffic and its
potential cybersecurity implications, such as the ac-
tual impact on service continuity and performance of
the targeted applications (Catillo et al., 2021b). For
this reason, in the past our research group, based at
the University of Sannio in Benevento (USB), Italy,
has released a dataset (USB-IDS-11) where the net-
work data collected was complemented with (i) per-
formance measurements of the victim under attack to
make it clear if the attack was actually successful in
disrupting the victim service and (ii) the actual config-
uration of the victim server (capacity, multithreading
capability and potential defense mechanism enabled,
if any).

1https://idsdata.ding.unisannio.it/usbids1.html



Following up our past work on these topics, this
paper presents the novel USB-IDS-TC dataset, which
addresses a different – and strongly overlooked by
the literature – issue: the dependence of the ML/DL-
based NIDS on the network scenario used to collect
the training traffic data. USB-IDS-TC is motivated
by the fact that the majority of the ML/DL NIDS
do not examine individual network packets, but rely
on bidirectional traffic flows. Flows are obtained by
hardware (e.g., routers) or by software from the pack-
ets exchanged in the two directions pertaining to the
same connection. Each flow consists of a record of
features suited for ML/DL purposes. The extracted
features include packet and payload length, number
of packets, transmitted bytes and mean length of pack-
ets, along with statistical measurements of the tim-
ing of the communication. ML/DL NIDS exploit
heavily time-related features, such as the interarrival
times of forward and backward packets making up
the flow. For example, the ubiquitous flow extrac-
tor CICFlowMeter, originally named ISCXFlowMe-
ter (Draper-Gil. et al., 2016), in its most recent ver-
sion generates bidirectional flow records made of 93
features: it must be noted that around 30% of features
are timing-related. In consequence, it is almost natu-
ral to wonder if different network scenarios with dif-
ferent bandwidth and latency – which surely impact
the timing-related features – would affect the detec-
tion capability of ML/DL NIDS.

In response to the challenge presented, USB-IDS-
TC provides network flow data – both normal traf-
fic and Denial of Service (DoS) attacks – obtained in
different network scenarios. The dataset is publicly
available on our web site2. To the best of our knowl-
edge, it is the first time that the flow data relative to
the same normal traffic and DoS attacks are collected
in different network scenarios. Our hope is that the
dataset could be beneficial to the NIDS community,
making clear the possible hidden effect of network
characteristics. USB-IDS-TC allows studying the de-
pendence of the attacks, traffic features and ML/DL
models on the network scenario, in order to strive for
generalizable and widely-applicable NIDS.

The paper is organized as follows. Section 2 dis-
cusses related work in the area and the original con-
tribution of USB-IDS-TC. Section 3 describes the ex-
perimental testbed and its emulation capabilities, the
attacks performed and the collection procedure. Sec-
tion 4 discusses the network scenarios and the dataset
organization. The key insights learned from our data
and possible future research directions are presented
in Section 5. In Section 6 we draw our conclusions.

2https://idsdata.ding.unisannio.it/usbidstc.html

2 RELATED WORK

Public intrusion datasets have boosted the academic
research on NIDS. Typically, these datasets are ac-
cessible in a raw format, such as PCAP packet data
files, or in a more “refined” format, such as network
flows organized in comma-separated values (CSV)
files. These CSV files are ideally suited for ML ap-
plications, which is the reason for the extensive use
of public datasets. A number of these datasets have
achieved notable popularity within the literature.

For example, KDD-CUP’993 can be considered
the “pioneer” for ML-based intrusion detection. It
was collected in 1999 and consists of two weeks of in-
stances free from attacks and five weeks of instances
containing attacks. It is important to note that, de-
spite its continued popularity (Kushwaha et al., 2017)
and status as a foundational contribution to the field
of intrusion detection, KDD-CUP’99 has several doc-
umented drawbacks (McHugh, 2000). Additionally,
after approximately two decades, it is no longer an
accurate representation of present-day network traf-
fic. This also applies to the more recent NSL-KDD
dataset (Tavallaee et al., 2009), a version of KDD-
CUP’99 with reduced size and duplicate entries re-
moved. In recent years, there has been a growing
trend towards critical analysis of security datasets.
For example, (Silva et al., 2020) identified statistical
flaws within the KDD-CUP’99 dataset that could in-
troduce bias during training of IDS models.

Among the latest publicly available intrusion de-
tection datasets, CICIDS2017 is undoubtedly the one
that has gained the greatest popularity. Released by
the Canadian Institute for Cybersecurity (CIC), its
reference paper (Sharafaldin et al., 2018) is currently
(November 2024) cited almost 4000 times on Google
Scholar, which places it among the most frequently
used datasets. A testbed framework was implemented
by the authors to generate benign and attack data sys-
tematically using different profiles. The dataset of-
fers both ready-to-use labeled flows and raw PCAP
files. Furthermore, the authors have developed CI-
CFlowMeter (Lashkari et al., 2017), a tool to gener-
ate network flows from raw PCAP files, which has
quickly become very popular. Regrettably, it was not
until after a long period of “blind” utilization of the
CICIDS2017 dataset by NIDS researchers that a num-
ber of studies identified major bugs and errors affect-
ing CICFlowMeter, resulting in incorrect flow records
from both CICIDS2017 and the younger CSE-CIC-
IDS20184 (Engelen et al., 2021; Rosay et al., 2022;
Liu et al., 2022; Lanvin et al., 2023).

3https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://registry.opendata.aws/cse-cic-ids2018/



Another widely known public intrusion detection
dataset is UNSW-NB15 (Moustafa and Slay, 2015).
Created by the Australian Centre for Cyber Security
(ACCS), it contains both real normal activities and
synthetic attack behaviors. The dataset is available
in both CSV and raw PCAP formats.

More recently, there has been a shift in focus away
from general purpose networks and towards attacking
networks designed for specific applications. For ex-
ample, the aforementioned CIC proposed datasets for
IoT, IoMT and IoV environments (Neto et al., 2023;
Dadkhah et al., 2024; Neto et al., 2024), and for elec-
tric vehicle (EV) charging infrastructures (Kim et al.,
2023; Buedi et al., 2024).

Our contribution. In our previous work (Catillo
et al., 2021a), we introduced a novel dataset that
took into account both performance metrics and
application-level facets, including “accessory” pa-
rameters of the experimental testbed such as com-
modity defense mechanisms. Here instead we present
a dataset that focuses on the influence of the network
scenarios on the traffic data. USB-IDS-TC captures
well known DoS attacks under diverse network sce-
narios, enabling researchers to investigate the impact
of network characteristics on intrusion detection per-
formance of ML/DL-based NIDS. To the best of our
knowledge, this is the first dataset of its kind, prepar-
ing the way for a deeper understanding of the trans-
ferability of intrusion detection methods.

3 TESTBED

It is not realistically feasible to set up a testbed with
enough hardware to provide the wide range of per-
formances characterizing current communication net-
works. In order to perform the packet capture for
our dataset, we decided to resort to an extensively-
configurable testbed environment, which makes it
possible to reproduce the behavior exhibited by most
real-life networks. The environment is based on
Docker containers, canonically connected through a
user-defined internal network that employs the bridge
network driver. It is crucial to note that the bridge
Docker network is characterized by several key at-
tributes: very high bandwidth5, minimal latency, and
absence of transmission errors (after all, it not a “real”
network). Consequently, to introduce network condi-
tions that are representative of real-world scenarios, it
is only necessary to exploit techniques such as band-
width shaping, injection of variable latency, and pos-
sibly inclusion of transmission errors.

5The iperf3 utility reports 23.6 Gbits/s on the work-
station used to collect the dataset

Figure 1: Experimental testbed.

The Internet Engineering Task Force (IETF) Re-
quest for Comments (RFC) 24756 defines traffic
shaping as the act of delaying packets within a traf-
fic stream. This delay is introduced to ensure that the
stream conforms to a predefined traffic profile. A traf-
fic profile is a specification that details the temporal
properties of a traffic stream, such as its rate (data
transmission speed) and burst size (maximum amount
of data transmitted in a short period).

Our implementation relies on the use of the Linux
tc tool. The tc tool is included within the iproute2
suite7, a collection of user-space utilities designed for
controlling the networking functionality of the Linux
kernel. The Linux manual page for the tc tool8

suggests that shaping goes beyond simply adjusting
bandwidth. In fact, tc offers functionalities that ex-
tend beyond basic bandwidth control. These function-
alities include, but are not limited to, shaping outgo-
ing network traffic by modifying the output rate and
introducing packet delay (which can be fixed, or in-
corporate a suitably-distributed jitter). Additionally,
tc allows for the introduction of packet loss, duplica-
tion and corruption.

3.1 Components of the Testbed

The detailed structure of the experimental testbed is
shown in Fig. 1. Each container within the testbed
executes a Debian 11 bullseye Linux instance. These
containers are assigned specialized functions as out-
lined below:

• webserver: This container runs an Apache2 web
server (version 2.4.57, default configuration). The
web server receives normal traffic originating
from the tester node and Denial-of-Service (DoS)
traffic sent by the attacker. The container also
runs the utility tcpdump, which captures all net-

6https://datatracker.ietf.org/doc/html/rfc2475
7https://git.kernel.org/pub/scm/network/iproute2/iproute2.git
8https://man7.org/linux/man-pages/man8/tc.8.html



Table 1: Parameters of the network scenarios

Network rate delay jitter loss corruption duplication
1 - Enterprise wi-fi 1 Gbit/s 5 ms 1 ms - - -
2 - Enterprise Branch Office 1 Gbit/s 20 ms 8 ms - - -
3 - Site-to-Site VPN 1 Gbit/s 20 ms 15 ms - - -
4 - Remote User VPN 100 Mbit/s 20 ms 15 ms - - -
5 - Degrated 100 Mbit/s 20 ms 25 ms 5 % 5 % 2 %

work traffic received by the webserver, and saves
it in PCAP format in permanent storage.

• tester: This container runs a load generator built
on top of the well-known httperf9 utility. First,
as for the normal traffic, it is used to issue ran-
domized web requests; second, the tester col-
lects response statistics to check the availabil-
ity/disruption of the Apache server functionality
during DoS attacks.

• attacker: This container generates DoS attacks
against the webserver by means of well known,
public-available tools, which are described below.

As mentioned above, the tc tool makes it possible
to control only outgoing network traffic. Hence the
set-up of the testbed for the emulation of any given
network requires to launch tc on the outgoing links
of the three containers with the same settings, as re-
ported in Fig. 1. The network scenarios reproduced
in USB-IDS-TC are presented in Section 4.

3.2 Normal and DoS Traffic

Normal traffic. The scripted load generator exe-
cuted at the tester node exploits httperf to issue
requests to the Apache web server for assorted con-
tents (small, medium and large HTML files, images,
PDF documents, . . . ). The normal traffic collection
has a duration of 20 minutes. As for the DoS traffic,
the attacker node launches four different DoS attacks
(HTTP flood, two kinds of slowloris, slow POST)
against the webserver, by the following tools:

• hulk10: it generates an HTTP flood, spawning a
large volume of obfuscated and unique requests
to prevent the recognition of a pattern that could
allow the filtering of the anomalous traffic;

• slowloris11: a tool producing DoS traffic based
on slow HTTP requests against the victim server,
effective in the exploit of a weakness of the HTTP
protocol related to the management of TCP frag-
mentation;

9https://github.com/httperf/httperf
10https://github.com/grafov/hulk
11https://github.com/gkbrk/slowloris

• slowhttptest12: this tool can extend anoma-
lously the duration of HTTP connections in differ-
ent ways. For the production of our dataset data,
we use slowhttptest both in the (i) “slowloris”
mode, which sends incomplete HTTP requests to
the victim server, and (ii) “slow POST” mode,
which sends message bodies at very slow speed.

The DoS tools, one at a time, are launched and kept
running for 180 seconds, enough to disrupt the web-
server service and to collect a significant sample of
attack traffic.

4 DATASET COLLECTION AND
ORGANIZATION

Normal and DoS traffic is collected in four represen-
tative network scenarios from (Fulkerson, 2017): En-
terprise Wi-Fi, Enterprise Branch Office, Site-to-Site
VPN, Remote User VPN. In addition, we constructed
a fifth scenario representing a severely degraded net-
work. This was deliberately selected to highlight the
discrepancies from any network with satisfactory per-
formance, and to examine the influence on the accu-
mulated traffic flows. The configuration specifics of
tc for the five networks are shown in Table 1.

In order to avoid any form of mislabeling – a
problem affecting many datasets currently in use –
the traffic capture for each network scenario is per-
formed with 5 independent experiments: (1) the
normal traffic, whose capture is named NOR, and
(2, 3, 4, 5), i.e., each individual DoS attack, lead-
ing to four additional captures named HLK (hulk),
GSL (slowloris), HSL (slowhttptest in slowloris
mode) and HSP slowhttptest in slow POST mode.
As mentioned before, during the DoS attacks, the
tester runs httperf, which continuously sends HTTP
requests to the webserver and records information on
the service availability. This probing HTTP traffic
(easily recognizable by its source node address) is not
recorded by tcpdump. In consequence, the traffic col-
lected in (2, 3, 4, 5) consists of “pure” attack packets,
not interleaved with normal traffic (present during the

12https://tools.kali.org/stress-testing/slowhttptest



Table 2: Number of flows by network scenario and capture

Network NOR HLK GSL HSL HSP
1 1658 79399 4072 5211 5244
2 1725 86281 3279 5107 5100
3 1677 82200 2795 5112 5126
4 1671 88525 2861 5102 5125
5 3285 98695 686 5494 5438

attack, but not recorded at all). The complete separa-
tion of normal and attack traffic is useful to avoid any
possibility of mislabeling the generated flows.

Overall, the five captures – conducted in the five
network scenarios assessed – lead to a total 25 PCAP
files. The PCAP files obtained have been processed
with the CICFlowMeter tool (see Fig. 1), which
is used to obtain the corresponding flow records.
It is noteworthy that the original CICFlowMeter,
which was utilized to generate the initial CICIDS2017
dataset, a widely used-resource in the machine learn-
ing community, was affected by a number of bugs that
had a significant impact on the consistency of the re-
sulting flow records. We have adopted a revised ver-
sion of the tool13 produced from independent studies
(Liu et al., 2022). The number of flow records for
each network scenario and each class of traffic is pre-
sented in Table 2. Although the duration of all the
DoS traffic captures is identical, it is evident that hulk
– producing a flood attack – generates a considerably
higher number of flows than the slow counterparts.
Furthermore, the introduction of packet errors and du-
plications during the capture of the network number 5
increases the number of flows of normal traffic and
results in a delayed impact (only 686 GSL flows) of
the slowloris script.

USB-IDS-TC is released in the form of five csv
files, where each file provides normal and DoS flow
records of one network scenario in Table 1. Each csv
file provides ready-to-use labeled network flows, ob-
tained appending the five previously-labeled flow col-
lections relative to the same network scenario. The
labels are the abbreviations already used in Table 2
(NOR, HLK, GSL, HSL, HSP).

General observations and use cases of USB-
IDS-TC. The dataset is not meant to be the “ulti-
mate” solution for NIDS testing, but a first step to
promote an in-depth understanding of the possible ef-
fect of the network scenarios on the performance of
ML/DL NIDS, issue commonly neglected at the state
of the art. It is worth pointing out that the choice
of using CICFlowMeter to obtain the traffic flows
makes USB-IDS-TC immediately interoperable with
the high number of NIDS proposals based on the use

13https://github.com/GintsEngelen/CICFlowMeter

Figure 2: Recall, precision and false positive rate of an IDS
model learned from network 1 and applied to network 1, 2,
3, and 5.

of CICIDS2017 and other major datasets of the CIC
collection. Moreover, any captured PCAP file pro-
cessed by CICFlowMeter can be used in conjunction
with USB-IDS-TC, paving the way for a study of
the transferability of NIDS models over different net-
work scenarios. As an aside, the proposed Docker/tc
testbed presented here can also be used to generate
realistic problem-space adversarial attacks by alter-
ing the timing of the packets sent by an attacker node
(Catillo et al., 2024).

5 KEY INSIGHTS

5.1 Intrusion Detection Implications

Our critical argument is that the specific network
scenario influences the traffic data and – in turn –
the value of the features extracted (especially those
timing-related). In consequence, an attempt to learn
a NIDS with the flow records obtained in a given
network may return a detection model that does not
transfer to the normal and DoS traffic of the other net-
works. Let us supplement this argument by a concrete
example with USB-IDS-TC. At first, we learn a NIDS
model with the flow records obtained in network 1. As
for any ML/DL experiment, we remove non-relevant
and biasing features (i.e., id, timestamp and protocol
of the flow records, source and destination IP address
and port) and split the records obtained in network 1
into the typical training, validation and test set (60, 20
and 20% of the records, respectively). Regarding the
technique to infer the NIDS, we use a decision tree;



(a) hulk (b) GSL slowloris

(c) HSL slowloris (d) slow POST

Figure 3: Throughput measured during the progression of
the attacks for some network scenarios.

however, any other classifier, e.g., Bayesian network,
oneR or DNN (to mention a few), would have fit the
scope of this example. The decision tree is trained
with the training set; parameterization and overfitting
issues are checked with the validation set.

The NIDS model obtained is tested with the test
set of network 1 (held-out from training and valida-
tion) and the entirety of records of network 2, 3 and
5 (network 4 is not reported because the results are
close to network 2). We compute the metrics of re-
call (R), precision (P) and false positive rate (FPR)
to measure the capability of the NIDS at recogniz-
ing the classes of traffic among NOR, HLK, GSL,
HSL, HSP. Fig. 2 shows the values of the metrics. As
expected, the model – when trained and tested with
the flow records collected in the same network sce-
nario (as typically done in most of the NIDS papers) –
achieves more than satisfactory results. The leftmost
set of five bars of Fig. 2 (pertaining to network 1) in-
dicate that four classes are detected with both R and P
≥0.97; the FPR is almost 0. The metrics obtained for
network 2, 3 and 5 are shown by the remaining bars
in Fig. 2. Compared to network 1, the drop is signifi-
cant in many cases. For example, the recall of HSP is
≤0.14 in both network 2 and 3; as for network 5, three
classes are far below 0.9 recall. Similar findings can
be noted for P, which drops in many cases, e.g, HSL
(network 2 and 5), HSP (network 2, 3 and 5), NOR
(network 5). FPR reaches the extremely high values
of 0.55 and 0.29 for HLK (network 2 and 3).

Suggested research directions. The lack of
transferability of ML/DL-based NIDS models is over-
looked by the NIDS literature. This is exacerbated
in the context of USB-IDS-TC because both normal
and DoS traffic are indeed the same, although exe-
cuted in different network scenarios. Our data can
help researchers to strive for more generalizable and
widely-applicable detectors. In this respect, future us-
ages of USB-IDS-TC may include (but not limited to)
the analysis of: the networks leading to more gen-
eralizable detectors, the attacks being most affected
by the network parameters, the robustness of existing
ML/DL techniques – and learning paradigms – with
respect to the network, the features depending on the
network or the construction/selection of more general
features suited for detection.

5.2 Effectiveness of the Attacks

The reader may argue that the efficacy of the attacks
might be affected by the specific network scenario;
however, this is not the case of USB-IDS-TC. Differ-
ently from many existing datasets (that do not disclose
any specific victim-side service availability measure-
ments), we monitored the performance of the vic-
tim server during the progression of the attacks. As
said above, in response to the probing HTTP load,
httperf generates several service metrics. Here we
provide some insights into the effectiveness of the
attacks in USB-IDS-TC by discussing the through-
put loss. The throughput loss (TL) is computed as
T L= T ∗−T

T ∗ ·100 (with T ∗≥T and T ∗>0 ), where (i) T ∗

– a constant – is the throughput (i.e., successful 2xx
HTTP requests accomplished within the time unit) ex-
pected in attack-free conditions for a given network
scenario and (ii) T is the actual throughput measured
during a DoS attack. TL varies within [0,100]%,
where 0 denotes “no loss” with respect to the attack-
free condition. Any point where TL>0% indicates
instead the presence of a DoS attack, because in our
testbed the only source of legitimate requests is the
tester node. Fig. 3 shows TL observed during the at-
tacks; for each attack, we show two networks because
all the cases produce similar results. Overall, the at-
tacks cause a variety of responses. For example, TL
raises from 0% to 90-95% in hulk (Fig. 3a), which
means the attacks leaves almost no room to serve the
legitimate requests; on the other hand, GSL slowloris
induces major fluctuations of TL, as shown in Fig. 3b.
HSL slowloris (Fig. 3c) and slow POST (Fig. 3d)
present an on-off behavior, where the throughput goes
from 0 to 100% in almost no time. The attacks are ef-
fective for all the network scenarios assessed.



(a) network 1 (b) network 2

(c) normal (d) hulk

Figure 4: PCA-based visualization of the flow records.

5.3 Visual Inspection

One more interesting finding on the traffic in USB-
IDS-TC can be inferred through a visual inspection
of the flow records. We conduct a Principal Com-
ponent Analysis (PCA) to visualize the flow records
in the feature space. PCA is a dimensionality reduc-
tion technique whose objective is to find the directions
along which a set of high-dimensional points line up
best. Flow records are regarded here as R86 points of
a Euclidean space, where 86 is the number of features
after removal of the label and non-relevant/biasing
features. We retain the top 2 principal components
(PC) explaining almost 40% of the total variance: this
is highly satisfactory for 2D visualization purposes.

Fig. 4a and 4b show the records pertaining to three
classes of traffic (i.e., NOR, HLK and GSL) for net-
work 1 and network 2, respectively. It can be noted
that the classes are “well” separated, which means it
is possible to infer a successful NIDS model on the
top of an individual network scenario; however, the
model obtained will not transfer – as shown in Sec-
tion 5.1 – to a different network scenario. This as-
pect remains surely intriguing because the classes of
traffic preserve their feature-space distribution across
the network scenario. For example, Fig. 4c shows the
normal flow records obtained in network 1, 2, and 3,
each marked by , ⊠ and ×, respectively. The nor-
mal points obtained in the different networks are dis-
tributed over the same area: the different networks
induce a “light” shift of the points. Similar consid-

erations can be done for the hulk records in Fig. 4d,
shown for network 3, 4, and 5.

We believe that the availability of different vari-
ants of normal and DoS traffic across different net-
work scenarios, such as those in USB-IDS-TC, is
strongly beneficial to the research community to learn
more flexible detection models or to test the transfer-
ability of a given NIDS proposal.

6 CONCLUSION

Intrusion detection is a hot topic, and the research
on NIDS should be fed with consistent and up-to-
date datasets. The scientific community tends to rely
on rather obsolete datasets, possibly obtained by col-
lecting traffic relative to attacks that are not actu-
ally harmful against targeted services. Mislabeling
is a further issue. In light of the above, new public
datasets providing effective attacks are required.

Compared to existing dataset proposals, our work
has gone in a novel direction. We have built a new
dataset where the same – well known and rather cus-
tomary – DoS attacks have been conducted over dif-
ferent network scenarios, in the belief that network
has a non-negligible effect on traffic features and the
detection capability of the NIDS. Furthermore, we
have tested the effectiveness of all the attacks. Our
initial analysis shows that the network scenario can
affect the capability of ML/DL detection.

We believe that the USB-IDS-TC dataset can
stimulate the research on the transferability of intru-
sion detection methods. Furthermore, the emulation
environment presented here lends itself to the study of
realistic problem-space attacks performed by altering
the timing of the attack packets sent. These topics will
be explored in our future work, which intends also to
provide the community with additional datasets rela-
tive to non-DoS attacks and problem-space adversar-
ial examples over multiple network scenarios.
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