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Abstract. The ever-growing occurrence of computer security incidents
calls for advanced intrusion detection techniques. A wide body of litera-
ture dealing with Intrusion Detection Systems (IDSes) is based on ma-
chine learning; many proposals rely on the use of autoencoders (AEs),
due to their capability to analyze complex, high-dimensional and large-
scale data. Most of the times, AEs are used as building blocks of much
more complex detection architectures, possibly in combination with so-
phisticated feature selection techniques. This paper summarizes several
years of work in this field, suggesting that “simpler is better” and that
a carefully tuned and trained AE can be used in isolation, obtaining
recognition results comparable with those attained by more complex de-
signs. The best practices presented here, regarding dataset production
and sanitization, AE set-up and training, threshold setting, possible use
of simple feature selection techniques for performance improvement can
be valuable for any practitioner willing to use autoencoders for intrusion
detection purposes.

Keywords: Intrusion detection · Autoencoders · Denial of Service.

1 Introduction

Due to the ever-growing occurrence and complexity of computer security in-
cidents, intrusion detection is, and will steadily remain, a hot research topic.
A wide body of literature aims at proposing e↵ective solutions to the lack of
security of the computer networks and devices our lives currently rely on, by
presenting new proposals of Intrusion Detection Systems (IDSes) [12]. The aim
of these systems is to discover (and possibly block or divert) on-going attacks
before any harm can be done. For a number of di↵erent reasons, present-day
IDSes are only partially successful to avoid the occurrence of security incidents.
These reasons include the high complexity and the huge bandwidth of currently
used networks, the use of brand new or unknown exploits, the amplitude of
the so-called attack surface. Moreover, often the security problem is blamelessly
ignored, and suitable countermeasures are set up only when it is too late.

In this situation, given the growing success of machine learning (ML) tech-
niques and the availability of processors suitably designed for this domain, a
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very large number of proposals in the cybersecurity field rely on ML [7]. The
“pattern” followed by most papers on ML and IDSes is typically the same: an
algorithm or an architecture based on neural networks (possibly deep ones) are
proposed, then are tested on reference datasets, very high performance figures
(often close to 100% intrusion detection capabilities) are proven by limited-width
experiments. But the continuous flow of new proposals clearly indicates the in-
trusion detection problem is still there, and that the experiments mentioned in
the papers have only limited validity in real-world networks.

Our previous work has tackled the problem of the lack of transferability of
the impressive results obtained on reference datasets (possibly outdated and not
free from statistical biasing) in even slightly-di↵erent data collection settings
[4]. This paper will instead focus on the unnecessary complexity of many exist-
ing IDS proposals. Among the wide corpus of the existing proposals, multiple
autoencoder (AEs) networks are often used in complex configurations, possibly
complemented by sophisticated feature selection methods. We develop around
the intuition that this complexity is not justified because a single autoencoder
–suitably trained and correctly used– is enough to obtain similar (if not better)
performance figures compared to existing proposals. This proposition is investi-
gated in the context of the widely-used CICIDS2017 intrusion detection bench-
marking dataset. The IDS solution proposed in this paper achieves 0.988 recall,
0.976 precision and 0.982 F1 with no feature selection and a single autoencoder;
moreover, results indicate that the use of feature selection yields negligible im-
provements over the metrics at the cost of demanding tuning attempts. Based
on the results, we discuss all our findings in several years of use of autoencoders
for IDS, pointing out a number of best practices that can lead to successful
performance results without unnecessary architectural complications.

The rest of this paper is organized as follows. Sect. 2 presents related work;
Sect. 3 deals with the basics of autoencoders, its use for classification and the
reference dataset. Sect. 4 discusses our proposal based on a single autoencoder
for intrusion detection, the issues related to its design and training. Sect. 5
investigates the possibility to perform feature selection, and present the results
obtained on the dataset. Sect. 6 closes with lessons, conclusions and directions
of future research.

2 Related Work

Despite decades of research and development, existing intrusion detection sys-
tems still face challenges in improving the detection rate, reducing the false
positives and –possibly– detecting unknown attacks. To solve the above prob-
lems, many researchers and practitioners have focused on developing intrusion
detection systems that capitalize on machine learning and deep learning

methods [13]. Moreover, in order to tune and test these techniques, many ready-
to-use public intrusion detection datasets have been produced [23]. Most
of these datasets are collected in synthetic environments under normative condi-
tions and di↵erent intrusion scenarios. They emulate real network tra�c and –at
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least in theory– they do not contain any confidential data. Almost all datasets are
released as labeled network flows, organized in comma-separated values files spe-
cially crafted to apply modern machine learning techniques. In particular, each
record is a flow and the label states if it is an attack or not. An example of an
intrusion detection dataset, flow-based, and widely used in literature is certainly
CICIDS2017 [24]. Released by the Canadian Institute for Cybersecurity (CIC)
in 2017, it simulates real-world network data and uses the tool CICFlowMeter
–more on this later– to produce labeled flow records. Other known flow-based
intrusion datasets are USB-IDS-1 [1], UGR’16 [17] and UNSW-NB15 [21].

Over the last few years, a boundlessness of machine learning methods for
misuse detection as well as anomaly detection have been proposed [16]. In gen-
eral, these approaches can be delegated as supervised or unsupervised depending
on whether there is a need to train the algorithm on labeled instances. In the
case of supervised learning techniques, the algorithm is trained on labeled data
points and it determines a function to map points to classes. Many supervised
approaches rely on a limited number of classifiers or only one classifier by achiev-
ing outstanding performance –detection close to 100%– [22]. However, a large
number of supervised methods also exploit artificial neural networks [25]. In the
case of unsupervised techniques, instead, there is no need for labeled data points
during the training phase. In this context the aim is to find the hidden struc-
ture of unlabeled data. Indeed, the vast majority of the unsupervised detection
schemes proposed in the literature are based on clustering and outliers detection
[28] [11].

Autoencoders are neural networks capable of learning features from un-
labeled data by automatically uncovering the underlying structure of the data
and by removing sources of variation in the input. They are designed to map
the input data points to an internal latent representation, which is then used to
reconstruct the input. Autoencoders were first developed as nonlinear extension
of the standard linear principal component analysis (PCA) in order to make
dimensionality reduction [14]. For example, in [15] the authors use an au-
toencoder to perform automatic features extraction with the aim to reduce the
dimensions of the data being processed. Thereafter, they classify the attacks by
means of the support vector machine algorithm. Feng et al. [9] show a graph and
autoencoder-based feature selection (GAFS) method, which projects the data
to a lower-dimensional space using a single-layer autoencoder. The approach
proved to be e↵ective when compared with existing state-of-the-art methods.
In [26] the authors propose a model which adopts two types of autoencoder. A
generic autoencoder is used to capture the generic features which are common
to all intrusions, while several ad-hoc autoencoders are trained with the aim to
capture patterns that are specific only to particular groups of intrusions. From
combining these two feature maps the authors propose a new feature map to
classify the intrusions by means of the random forest classifier.

However, autoencoders are often used also in recent studies for anomaly

detection purposes. In this context they are mainly components of a more
complex network, specially crafted with the aim to design sophisticated detec-
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tors. In [20] the authors propose Kitsune, an unsupervised learning approach to
detect attacks online. Kitsune’s core algorithm is KitNet, which uses a collection
of auto-encoder neural networks to distinguish between normative and abnor-
mal tra�c. The approach involves the integration of multiple autoencoders into
a classifier. Experimental results show that Kitsune is e↵ective with di↵erent at-
tacks, and its performance is as outstanding as o✏ine detectors. In [29], instead,
the authors propose an e↵ective deep learning method, namely autoencoder-IDS
(AE-IDS) based on random forest. In particular, they use the random forest
algorithm to select the actual features from the original dataset. The main in-
novation of the approach lies in the combination of 3-layer shallow autoencoders
and traditional unsupervised machine learning clustering algorithm. The exper-
imental results show that the proposed approach, evaluated by means of the
CSE-CIC-IDS 2018 dataset, is superior to traditional machine learning meth-
ods in terms of easy training, strong adaptability and high detection accuracy.
A further heterogeneous ensemble method for intrusion detection is proposed
by Zhong et al. [30]. In particular, the authors propose HELAD (Heterogeneous
Ensemble Learning Anomaly Detection), an unsupervised approach where an au-
toencoder is combined with a long short-term memory (LSTM) predictor. The
authors evaluate their approach by means of the MAWILab3 and CICIDS2017
datasets. The experimental results show that the HELAD algorithm has bet-
ter adaptability and accuracy than other state-of-the-art algorithms. Min et al.
[19] propose a network intrusion detection method using a memory-augmented
deep autoencoder (MemAE), which can solve the over-generalization problem
of autoencoders. MemAE solves this problem by bringing the reconstruction of
the attack inputs closer to the normal sample through the memory module.
Experiments are conducted on the NSL-KDD, UNSW-NB15, and CICIDS2017
datasets.

It is worth pointing out that all the aforementioned autoencoder systems
adopt fairly sophisticated infrastructures. The detection of di↵erent classes of
anomalies has been recently addressed by means of system log analysis and a
deep autoencoder [2]: the proposed approach, called AutoLog, is based solely on
a deep autoencoder network without any kind of artifice in the infrastructure.

3 Background and Datasets

3.1 Autoencoders (AE)

An autoncoder (AE) is a feedforward neural network where the output layer

has the same dimension as the input layer. In fact, the purpose of an AE is to
“reconstruct” the input at the output layer. The middle hidden layer of an au-
toencoder is also known as the bottleneck layer and its dimension is lower than
the input/output layer. Fig. 1 shows the representation of a basic autoencoder
with three hidden layers.

It is possible to design di↵erent types of autoencoders [10]. In particular,
deep learning can be applied to autoencoders: multiple hidden layers are used to
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Fig. 1: Representation of an autoencoder.

provide depth. The resulting network is known as deep or stacked autoencoder

[27].
An autoencoder consists of two parts: encoder and decoder. Let x be an

input vector of n real numbers [x1,x2,...,xn], the encoder maps x to a code
vector or hidden representation y at the bottleneck layer. On the other hand,
the decoder transforms y into a vector of n real numbers z = [z1, z2, ..., zn]. It
tends to reconstruct the input vector x from y. Encoding-decoding formulas are
given in Eq. 1 and Eq. 2. They represent the case of a “basic” autoencoder with
only one hidden layer:

y = �(Wx+ b) (1)

z = �0(W 0y + b0) (2)

where W , W 0, b and b0 are weight matrices and bias vectors, while � and �0

are activation functions.
Regardless of the architecture, an autoencoder has one primary objective:

reconstruct its input as accurately as possible. The goodness of the reconstruc-
tion is given by the reconstruction error (RE), which measures the di↵erence
between the reconstructed, i.e., z, and the original version of the input, i.e., x:

RE =
1

N

nX

i=1

(zi � xi)
2 (3)

where zi and xi (with 1in) denote the components of the output and input
vector, and n is the dimensionality.

3.2 AE for classification and evaluation metrics

The rationale underlying the use of the AE for classification is that it can be
trained to reconstruct a given set of inputs. After training, the autoencoder
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will accurately reconstruct, i.e., obtain low RE, future points “similar” to those
used for training, while it will badly reconstruct, i.e., high RE, future points
“di↵erent” to those used for training.

Threshold setting. In order to discriminate good from bad reconstructions
we rely on a cuto↵ threshold value. The threshold is the value of RE over which
the flows are considered malign. In our first attempts [3], the threshold was set
in a supervised manner, reserving a small part of the dataset in hand to obtain
an optimal balance false positives (benign flows falling over the threshold) and
false negatives (malign flows under the threshold). In our attempt to set up an
autoencoder that never sees malign flows and it is potentially fit to detect any
type of attack, we resorted successively to a threshold set at a given percentile
of the RE [2]. This approach was not completely satisfactory, because it may
produce some false positives. In this paper, thresholds are set in unsupervised

manner (i.e., without any cognition of the attack flows) by considering the out-
liers produced in the reconstruction of the benign flows used in the training
step.

Evaluation metrics. The overall performance of the classification is mea-
sured by analyzing the typical metrics of recall (R), precision (P), false positive

rate (FPR), and F1 score. These metrics are computed as follows:

R =
TP

TP + FN
P =

TP

TP + FP
(4)

FPR =
FP

FP + TN
F1 score = 2 · P ·R

P +R
(5)

where True Positive (TP) and True Negative (TN) represent the points that
are correctly classified, while False Positives (FP) and False Negatives (FN)
indicate misclassifications. For example, TP is the set of attack points whose RE
is higher that the threshold; similarly, TN is the set of normal points whose RE
is lower that the threshold.

3.3 Reference Dataset: CICIDS2017

CICIDS2017 is a flow-based dataset based on CICFlowMeter1. The flows synthe-
size the characteristics of any interaction between two systems on the net, and
can be generated from network captures by many existing tools. CICFlowMeter
derives from a tool originally conceived to recognize the type of encrypted tra�c
and provides detailed information on the flow of packets occurring and their tim-
ing. Table 1 shows the 83 features associated with a flow by CICFlowMeter. It
is a fact that this information can be successfully exploited to recognize malign
flows, which is the primary aim of an IDS.

Extensive research on erroneously classified flows lead us to discover that
often the attack flows contained in CICIDS2017 do not really harm a correctly-
configured server [5] and that the flows produced by the original release of the

1 https://github.com/ahlashkari/CICFlowMeter
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Table 1: The features of a network flow produced by CICFlowMeter
Feature short Feature short Feature short
Flow ID f1 Fwd IAT Std f29 ECE Flag Count f57

Source IP f2 Fwd IAT Max f30 Down/Up Ratio f58

Source Port f3 Fwd IAT Min f31 Average Packet Size f59

Destination IP f4 Bwd IAT Total f32 Avg Fwd Segment Size f60

Destination Port f5 Bwd IAT Mean f33 Avg Bwd Segment Size f61

Protocol f6 Bwd IAT Std f34 Fwd Avg Bytes/Bulk f62

Timestamp f7 Bwd IAT Max f35 Fwd Avg Packets/Bulk f63

Flow Duration f8 Bwd IAT Min f36 Fwd Avg Bulk Rate f64

Total Fwd Packets f9 Fwd PSH Flags f37 Bwd Avg Bytes/Bulk f65

Total Backward Packets f10 Bwd PSH Flags f38 Bwd Avg Packets/Bulk f66

Total Length of Fwd Packets f11 Fwd URG Flags f39 Bwd Avg Bulk Rate f67

Total Length of Bwd Packets f12 Bwd URG Flags f40 Subflow Fwd Packets f68

Fwd Packet Length Max f13 Fwd Header Length f41 Subflow Fwd Bytes f69

Fwd Packet Length Min f14 Bwd Header Length f42 Subflow Bwd Packets f70

Fwd Packet Length Mean f15 Fwd Packets/s f43 Subflow Bwd Bytes f71

Fwd Packet Length Std f16 Bwd Packets/s f44 Init Win bytes forward f72

Bwd Packet Length Max f17 Min Packet Length f45 Init Win bytes backward f73

Bwd Packet Length Min f18 Max Packet Length f46 act data pkt fwd f74

Bwd Packet Length Mean f19 Packet Length Mean f47 min seg size forward f75

Bwd Packet Length Std f20 Packet Length Std f48 Active Mean f76

Flow Bytes/s f21 Packet Length Variance f49 Active Std f77

Flow Packets/s f22 FIN Flag Count f50 Active Max f78

Flow IAT Mean f23 SYN Flag Count f51 Active Min f79

Flow IAT Std f24 RST Flag Count f52 Idle Mean f80

Flow IAT Max f25 PSH Flag Count f53 Idle Std f81

Flow IAT Min f26 ACK Flag Count f54 Idle Max f82

Fwd IAT Total f27 URG Flag Count f55 Idle Min f83

Fwd IAT Mean f28 CWE Flag Count f56

CICFlowMeter tool –commonly used in the context of IDS research– contain
inexplicable flows. These are actually fragments of an incorrectly truncated flow.
A patch to the latter issue was recently provided in [8], along with a new version
of both CICIDS2017 and CICFlowMeter: experimentation presented in this paper
is based on the fixed version of CICIDS20172.

We consider 490,968 flows related to normal tra�c and DoS attacks. Flows
are split into three disjoint subsets used for training, validation and test by
a stratified sampling strategy with no replacement. This means that the ratio
between benign and attack classes of the total flows is preserved in the splits.
Flows are divided as follows:

– CICIDS-TRAINING: 70% of the total (i.e., 343,680) divided into 223,430
BENIGN and 120,250 ATTACK flows;

– CICIDS-VALIDATION: 15% of the total (i.e., 73,644), divided into 47,877
BENIGN and 25,767 ATTACK flows;

– CICIDS-TEST: 15% of the total (i.e., 73,644), divided into 47,877 BENIGN
and 25,767 ATTACK flows.

4 Proposed IDS approach with a single AE

The idea of leveraging a relatively simple neural network and to train it with
normative tra�c (thus using a semi-supervised approach), making it possible to

2 https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html
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Table 2: Initial features used in experiments
77-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f38, f39, f40, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51,

f52, f53, f54, f55, f56, f57, f58, f59, f60, f61, f62, f63, f64, f65, f66, f67, f68, f69, f70, f71, f72, f73,

f74, f75, f76, f77, f78, f79, f80, f81, f82, f83

detect intrusions simply because of their divergence from the “normal” behavior
the AE was trained on, is indeed fascinating. Our first results, obtained by
setting the threshold with a supervised approach (balancing false positives and
false negatives on a labeled portion of the dataset) and published in [3], were
not so bad (F1 score = 0.942), but inferior to those obtained by supervised
detection methods [18]. A successive attempt exploiting three AEs lead to better
performance [6].

In the following, we discuss our best practices for setting up an AE for suc-
cessful intrusion detection, using the above mentioned dataset as case study. It is
worth noting that out of the 83 features in Table 1, six of them (f1-f5, f7) can be
neglected outright for detection purposes –it is too easy to detect malign flows
in a dataset by exploiting the IP of the attacker– as such, the initial experiment
is conducted with the 77 features in Table 2. We will demonstrate that even a
single-AE design can obtain remarkable results, avoiding unnecessary complica-
tions and undue overhead. Along with our indications for AE tuning and set-up,
we will outline the research issues still open.

4.1 AE dimensions and depth

The first step to set-up an AE for intrusion detection is to choose a suitable form
factor, i.e., the number of levels and neurons at each level. Given the number of
input and output units, which are necessarily equal to the number of features
considered, it is necessary to choose the number of hidden levels and the number
of units at each level. Unfortunately, there are no rules to guide this choice, and
so the only way is to proceed by trial and error.

Almost unexpectedly, we have found that the number of levels and units is
not a particularly critical parameter. It is possible to obtain low RE with three
hidden levels (encoding-bottleneck-decoding), or with five hidden levels as well.
The only criticality is the number of units at the bottleneck, which have to hold
the encoded flow state. In the case of network flow processing considered here
we have found the best results by using a bottleneck made up of 6 up to 8 units.
In the following, we will always present results relative to a 48-24-8-24-48 relu

units deep AE.

It is interesting to note that there exist frameworks to automatize the search
of a “good” network (e.g., Keras optimizers). For a simple network such as our
AE, we think that the use of extensive optimization procedures is overkill.
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4.2 Training and validation

Unlike the previous step, the modality of training is critical to obtain high de-
tection performance. The AEs we have used for IDS are always trained in semi-

supervised mode. By semi-supervised training we mean that a subset of the
dataset in hand is reserved for training, from which only the normative tra�c
(benign label) is selected: during training, the AE sees no flows related to attacks.
Benign flows are presented in input to the AE, whose weights are progressively
tuned trying to obtain low RE, i.e., an output as close as possible to the flow
presented in input, feature by feature.

The rationale is to instruct the AE to reproduce normative flows, hoping
that any divergence with respect to a “benign behavior” could lead to a high
reconstruction error, making it possible to recognize attack flows. We will not
discuss here if an AE could be some sort of “universal” detector. The issue is
tough; however, at the state of the art there is evidence that, even if an AE can
be fooled by a hand-crafted or adversarial learning-produced attack, it tends to
behave better than supervised networks for unseen attack flows (see for example
the experiments reported in [3] and [4]).

Our AEs are implemented by the ubiquitous deep learning framework Keras,
which in its turn founds on Tensorflow. As for any learning framework, train-
ing is based on training-validation sets (i.e., CICIDS-TRAINING and CICIDS-
VALIDATION after having filtered out the attack flows). When the training is
started, the AE neurons are randomly initialized and input data are presented
in batches through a given number of epochs. The systems tries to minimize
the loss, setting aside a small ratio of reserved data to validate the optimization
actions performed –modifications of the weights in the network– so as to signal
overfitting. A solution is to compute the loss as the mean squared error at the
output units; this matches the definition of reconstruction error (RE) above.

Issue 1: The training process is highly dependent on the hardware running
Keras/Tensorflow.

Di↵erent CPUs (or GPUs) will lead to di↵erent schedules of the threads used
for optimization in the training phase, and in the end to di↵erent weights in the
network. The same is true for the seed of the pseudo-random generator used
for units initialization. This is a physiologic characteristic of machine learning
environment as Keras/Tensorflow: while we would expect only a slight variabil-
ity of the results from run to run due to the seed, this is not the case for a
semi-supervised autoencoder to be used for intrusion detection, as shown in the
following subsection.

4.3 Results

It is a fact that all possible trainings on the same input data lead to fairly
similar loss values. In other words, whatever the hardware used or the random
seed, it works. The bad surprise is that at equal values training losses do not
correspond equal abilities to detect malign flows. Fig. 2 shows two plots of the
reconstruction error obtained on the CICIDS-TEST file (i.e., the split of benign
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(a) seed = 1116, F1 = 0.9851 (b) seed = 4, F1 = 0.8904

Fig. 2: Reconstruction error for di↵erent seed values measured with the test set
(CICIDS-TEST).

and malicious flows held out from training) by the same AE in perfectly equal
conditions, let aside the random seed value. Both networks are perfectly able to
recognize benign flows, which are mostly under the threshold. However, in the
plot on the right the dots corresponding to malign flows are in a lower posi-
tion, and so the detection performance is completely unsatisfactory. Simply by
changing the seed, the F1 score falls from 0.9851 (a fairly good result) to 0.8904
(an unsatisfactory detection performance). Most notably, the two networks have
similar final training loss values (1.2119e-04 and 1.3234e-04, respectively), but
di↵erent detection performance.

Issue 2: A successful training leading to low loss values does not guarantee good
classification performance.

The RE (or the loss measured by Keras, which is the same) is a mean
of squares, extended to all features. The loss being equal, the contributions
of the single features may be distributed di↵erently. Possibly, one of the non-
deterministic distribution of weights might lead to high error on the features that
are most fit to recognize a given type of attack. There is no possible solution,
as the attempt to provide an “universal” detector makes it impossible to assign
higher weights to some of the features when computing the loss, simply because
we do not know which could be the most relevant features for an unknown or
new type of attack.

Issue 3: The seed used to start the random sequence generation counts, in that
it leads to di↵erent trained models.

This is an open research issue. For the time being, the only viable solution
is to validate the training performed using a (labeled) subset of the dataset (the
validation file reserved for this purpose), and try to change the random seed until
satisfactory results are obtained. It is clear that this process leads to a detector
able to manage at best the attacks present in the dataset, but that possibly could
be less successful for di↵erent types of attack.
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(a) Hulk-anova (b) Hulk-mutual (c) Hulk-rndforest

(d) Slowhttptest-anova (e) Slowhttptest-mutual (f) Slowhttptest-rndforest

Fig. 3: Scores of the 77 features, Hulk and Slowhttptest from USBIDS1 dataset

Table 3: Reduced sets of features used in experiments
67-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51, f52, f53, f54,

f55, f57, f58, f59, f60, f61, f68, f69, f70, f71, f72, f73, f74, f75, f76, f77, f78, f79, f80, f81, f82, f83

57-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51, f52, f53, f54,

f55, f57, f58, f59, f60, f61, f68, f70, f71, f72, f73, f75

47-features set
f6, f8, f9, f10, f11, f12, f13, f15, f16, f17, f19, f20, f21, f22, f23, f24, f25, f27, f28, f29, f30, f32, f33,

f34, f35, f36, f37, f41, f42, f43, f44, f46, f47, f48, f49, f50, f51, f53, f54, f58, f59, f60, f61, f71, f72,

f73, f75

5 Feature selection

Feature selection techniques are widely used in the intrusion detection context to
help obtain higher detection accuracy, neglecting the features which are redun-
dant or statistically do not contribute significantly to the classification of flows.
Out of the features listed in Table 1, it is very unlikely that all of them are
useful for detection purposes. Sometimes a few ones are constant through all the
dataset, and so have no utility for flow classification. Given the problems linked
to the mean used to compute the loss discussed in Subsect. 4.3, any reduction of
the number of features actually used can help to obtain, being equal the loss, an
AE better tuned to the “significant” features. But, once again, without knowing
the characteristic of attacks is not possible to know which features can be useful
for malign flow recognition and which are useless.
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Fig. 4: Reconstruction error and confusion matrix of the 47-features AE

Table 4: Classification performance of the feature sets
77-features set 67-features set 57-features set 47-features set

R 0.988 0.987 0.986 0.987
P 0.976 0.982 0.984 0.987
F1 0.982 0.984 0.985 0.987

Fig. 3 shows a sample of the results of widely used statistical tests (ANOVA
f-test, mutual information statistic, random forest) performed on di↵erent type
of attacks3. Each histogram reports the scores (y-axis) of the 77 features (x-
axis). Higher score means higher contribution to the classification of the flow as
a malign one. As can be seen at a glance comparing the histograms, the set of the
most relevant features is not uniform across all types of attack, and also depend
on the statistical test performed. In light of the above, selecting only some of the
77 features can help detection, but the detector loses “universality” as at least in
principle unknown attacks could be spotted by the neglected features. However,
a reasonable trade-o↵ can be made by neglecting a small number of features
which are ranked in the lowest positions according to the tests performed.

We have tried to discard the lowest-ranked 10, 20 and 30 features, obtaining
“reduced” sets of 67, 57 and 47 features, respectively, as shown in Table 3. As
expected, reducing the features helps a bit to obtain good classification perfor-
mance. Table 4 shows the P, R, F1 values obtained; the best performance is
obtained with the 47-features set. However, it should be noted that this might
involve bad classification performance on unseen attacks (i.e., those not present
in the dataset used to compute the feature rankings).

5.1 Results

As previously shown in Table 4, the best performance results have been obtained
by the AE processing 47 features, with seed = 1062 and 90 training epochs. In
Fig. 4 we present the graph of the RE over the testing set and corersponding the
confusion matrix. Maybe further tuning could help to obtain a slightly higher
performance, but at these levels of precision and recall, it is likely to would be

3 Attacks are taken from the USB-IDS-1 dataset.
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simply a waste of time, since the flows misclassified are only 674 (329 + 345) on
a total of 73,644 test flows.

The figures obtained are comparable with the results obtained on the CI-
CIDS2017 or similar datasets by supervised methods [22] or by AEs as compo-
nents of more complex classification architectures. For example, the authors of
HELAD system [30] –autoencoder combined with a long short-term memory–
achieve an F1 score of 0.995. The performance is even worse –F1 score of 0.955
for DoS slowloris– for the approach using memory-augmented deep auto-encoder
(MemAE) [19].

In our opinion, resorting to a single “basic” AE without any assistance from
other neural networks or complex feature selection methods is a clear advan-
tage in term of simplicity of training and tuning, use of processing power at
recognition time. Another strong point of our solution is good adaptability to
unknown attacks, as only feature selection –which is just an option, not a strict
requirement– requires a minimum notion of the attacks to be detected. A solu-
tion as ours requires no powerful or specialized processor, and is amenable to
processing large quantity of data in real-time. This is why we claim that “simpler
is better” and promote the use of a single autoencoder in future IDS designs.

6 Lessons learned and conclusion

In this paper we have explored the use of a single autoencoder to classifly network
flows for intrusion detection purposes. We have presented the results of several
year of research on this topic, the lessons learned and the open research issues.
It is worth summarize the main lessons learned throughout our research on AE
for network flow classification:

– if the AE is developed by Keras/Tensorflow, the trained models obtained
with the same training data on di↵erent computing systems (alternative
CPUs or GPUs) are likely to di↵er;

– the seed used to start the random sequence generation counts, in that leads
to di↵erent trained models;

– trained models characterized by similar values of loss can be very di↵erent as
far as their classification performance is concerned. Hence, multiple models
should be produced and suitably tested on a validation subset of the dataset
so as to make it possible to choose the one with the best performance;

– a rigorous feature selection procedure requires information on the attacks to
be detected. If this information is available, discarding scarcely significant
features can improve classification accuracy. However, this is obtained at the
expense of possible accuracy losses on unconsidered attacks.

The results obtained show that a single AE can obtain classifications accu-
racy comparable to the ones published in the research literature for supervised
networks and for more complex designs built around one or several AEs. Our sin-
gle autoencoder detection scheme is less probe to transferability problems than
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supervised schemes and can be more easily tuned and managed than designs
adopting AE as components.

The accuracy results obtained on the CICIDS2017 dataset leave little room
for further improvements. Our future research will oriented to the study of a
training procedure and to the production of normative training data able to
pave the way to the set up of an autoencoder able to recognize even unseen
attack flows with reasonable accuracy.
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