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Abstract

Public intrusion datasets are contributing to make security research accessible
to a large community of users, but are often trusted and reused neglecting8

the actual impact of the attacks therein on victim services. This paper
documents a study aimed to assess whether the attacks provided by public
datasets are impactful on their targets. DoS tra�c data from five public
datasets (CICIDS2017, ISCXIDS2012, NDSec-1 2016, MILCOM 2016 and12

SUEE 2017) are replayed, monitoring the performance of the victim server
under di↵erent defense, configuration and load conditions. The obtained
results show a partial ine↵ectiveness of the attacks of the datasets in the
presence of defense mechanisms and suitable server configurations. These16

results pave the way for the construction of more rigorous datasets, collected
on documented and realistic server configurations and reflecting actual tra�c
conditions under normative operations and disruptive attacks.

Keywords: Denial of Service, tra�c replay, web server, availability20

1. Introduction

As the risk of cyber attacks constantly grows through the years, the use
of data collected in normal and altered system state is widely recognized as
a mean to discriminate between normal operating conditions and anomalous24

ones. Security data can be collected from multiple sources that range from
customary system and application logs to specialized tools such as intrusion
detection systems, network audit agents, integrity monitors. Insightful inspec-
tion of data can help system administrators to develop situational awareness,28

to detect and classify security incidents, and to set up countermeasures and
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defense strategies [1], [2], [3], [4], [5]. Unfortunately, due to obvious confiden-
tiality and non-disclosure reasons, publicly-available data relative to sponta-
neous (i.e., neither induced nor simulated) security attacks and incidents32

are lacking. In consequence, research on network, system and application
security is often carried out by experimentation on data collected through
honeypots and “lab-made” intrusions. In particular, research on intrusion
detection systems (IDS) customarily relies on public datasets, collected by36

network tools in a controlled testing environment trying to mimic realistic
attack conditions. Available intrusion datasets are surveyed in [6] and in-
clude the widely used KDD-CUP’99, UNSW-NB15, NDSec-1 2016, CICIDS
collections, to mention some examples.40

Public datasets have become common benchmarks for intrusion detection
techniques and tools. As a matter of fact, security researchers and practi-
tioners use the detection figures obtained on known datasets as yardstick to
measure the validity of their proposals. For example, recent trends put forth44

a massive –and ever-increasing– body of papers on machine-learning-based
intrusion detectors, which are typically assessed by attempting to detect
attacks from public datasets with high recall, precision and accuracy. Sur-
prisingly, in spite of the consolidated usage of public datasets, the problem of48

their representativeness, linked to often-lacking information on collection
testbeds and modalities, configuration of nodes and applications, workloads,
attack types and impact, has been hardly ever dealt with in the literature
on security research. A notable example is the work on the KDD-CUP’9952

dataset. Authors in [7] indicate that KDD-CUP’99 lacks up-to-date attack
classes and contains duplicate records. These same considerations hold for
the younger NSL-KDD dataset, which is intended to solve some of the in-
herent problems of KDD-CUP’99; however, it still su↵ers from several limi-56

tations originally discussed in [8]. Even taking for granted the validity of the
collection modalities of more recent datasets, there is a further issue to con-
sider. The doubt is whether the attacks used for generating these datasets
are actually e↵ective against their targets, or are a just a sort of “temporary60

disturbance” that can be tolerated, possibly with no e↵ect, by present-day
hardware and software systems. In the second case, we would paradoxically
find that a substantial body of work was produced by researchers training
new detection systems and assessing their validity on the top of attacks that64

have no actual harmful e↵ect on their targets.
This paper develops around the observation that public datasets are con-

tributing to make security research accessible to a tremendous community
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of users; however, we observe that datasets are blindly trusted and reused68

neglecting the actual impact of the attacks therein on availability and per-
formance of operations of the victim services. Di↵erently from this common
practice, our study aims to assess whether the attacks provided by pub-
lic datasets are impactful, and to shed some clear light on the factors that72

determine their e↵ectiveness. This work puts forth an unprecedented per-
spective on public datasets: to the best of our knowledge, we are aware of
no similar studies. Our proposition is explored in the context of publicly-
available tra�c data gathered under Denial of Service (DoS) attacks [9].76

The class of DoS attacks is typically available in any public dataset and keeps
attracting e↵orts by many research groups. For example, countermeasures
have been developed to mitigate DoS attacks [10]; more important, a ple-
tora of DoS detectors have spread in the literature given the rapid growth of80

deep learning methods and tools [11]. DoS detection is the typical use case
of public datasets where researches tend to dig into machine learning facets
–detection rate is now close to 100% in many cases– rather than reasoning on
the representativeness of the datasets and how it may bias detection results84

in practice.
In a previously-appeared paper, we documented a preliminary experi-

ment with one attack from the widely used CICIDS2017 dataset [12]. Here
we present a much wider study with CICIDS2017, ISCXIDS2012, NDSec-188

2016, MILCOM 2016 and SUEE 2017, a large mixture of di↵erent DoS at-
tacks and a detailed investigation of the impact of defense, which contribute
to comprehensive experiments and findings along di↵erent directions. For all
the datasets mentioned above, collected and made available by independent92

research teams over the past years, tra�c data are provided in the form of
pcap packet data files, which are typically produced by many common net-
work capture utility programs. In order to understand the hype around these
datasets, it is interesting to note that, after three years since its publication,96

the reference CICIDS2017 paper [13] is rapidly approaching 700+ Google
scholar citations at the time of this writing. Our evaluation approach in a
nutshell consists in replaying attack tra�c data stored in public pcap files
against a victim web server in a controlled testbed; during the replay of the100

attack, the victim is continuously monitored to collect the typical metrics of
throughput, reply time and throughput loss. To conduct the experiments we
propose a support tool called RELIVE, which allows to “relive” previously-
captured tra�c data over brand new sockets and connections. The campaign104

consists in repeated experiments where each attack is replayed under di↵er-
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ent combinations of key factors, i.e., presence of defense, configuration of
the victim server and load conditions. It is worth noting that all of these
can alter the impact of a given DoS attack; however, assessed datasets are108

not accompanied by specific details covering any of them. Our experiments
indicate that only few attacks are e↵ective in case of realistic operating con-
ditions. The key outcomes and findings of our study –with respect to the
datasets and system in hand– are:112

DoS tra�c provided by public datasets su↵ers from the presence of
proper defense mechanisms. Most of the public attacks assessed in
the paper are strongly mitigated by a defense module included by the
default installation of the victim server. Surprisingly, we had to “manu-116

ally” disable some deference mechanisms –thus render the victim much
less secure than expected– in order to make the attacks e↵ective. In
consequence, most of the attacks would be negligible against real-life
servers where proper defense is reasonably in place.120

The configuration of the victim server has a major impact on the e↵ects
of a DoS attack. We observe that the e↵ects of many public attacks
assessed here disappear against a “tuned-up” configuration of the web
server, i.e., by boosting its capacity and multithreading capability. For124

example, in our study the loss of throughput of the victim under several
attacks drops from 100.0%, i.e., service unavailable, to 0%, i.e., no
impact, after adjusting the server configuration.

A DoS attack per se explains only a portion of the performance loss of128

the victim server. “Benign” load served by the victim (i.e., load gen-
erated by legitimate clients) must be properly accounted when char-
acterizing a DoS. As for the public attacks, we did not observe an
advantageous interplay between attack tra�c and increasing load. The132

sharp separation of malicious/benign tra�c –typical of many public
datasets– does not properly reflect uncertainty of real-life operations.

The rest of this paper is organized as follows. Section 2 presents related
work on public datasets, pertinent literature on DoS attacks and existing traf-136

fic replay tools. Section 3 describes the controlled testbed and experimental
procedure. Section 4 provides a description of RELIVE and its validation by
means of di↵erent DoS attacks. Section 5 describes the results of our study
and an analysis of the key findings. Section 6 discusses the threats to validity140

and how we mitigated them, while Section 7 concludes the work.
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2. Related Work

2.1. Public security datasets and selection criteria

Nowadays, an ever-growing community of researchers and practitioners144

leverages public intrusion datasets to tune and test detection techniques.
This choice is justified by the usability of the datasets, which are accessible in
di↵erent data formats. For example, they might be available in a raw format,
such as pcap packet data files, more “refined” formats, such as network flows148

organized in comma-separated values (csv) files –specially crafted to apply
modern machine learning techniques– or both. Undoubtedly, the availability
of such data makes the evaluation of di↵erent intrusion detection systems
extremely simple.152

Many public security datasets have been proposed over the years [6].
Some of them have gained an extraordinary popularity and are still used as
a common benchmark, despite the scarce representativeness due to the ab-
sence of data attributable to modern attacks. One of these is KDD-CUP’991.156

The dataset was created in 1999 and used for the Third International Knowl-
edge Discovery and Data Mining Tools Competition. It includes a wide
variety of intrusions simulated in a military network environment and has
been used in many studies during last 20 years; the reference article for160

KDD-CUP’99 preparation [14] has been cited around 1200 times according
to Google Scholar at April 2021. For years, it has been considered the refer-
ence dataset to test most detection algorithms; even recent work, such as [15]
and [16], use this dataset for tuning the detection algorithms. After about164

two decades, the KDD-CUP’99 dataset is hardly ever a perfect representative
of present-day networks. These considerations are also valid for the younger
NSL-KDD dataset [7], suggested in 2009 to solve some of the inherent prob-
lems of KDD-CUP’99, such as biased classification due to over-correlated168

features.
In recent years, studies that look at security datasets with more critical

thinking are spreading. For example, an investigation of the reliability of
KDD-CUP’99 is reported in [17]. In particular, the Authors identify some172

statistical flaws that might introduce bias when training intrusion detection
models. A security dataset that faced some criticisms not long after its re-
lease is DARPA [18]. It was created, in its di↵erent versions (1998-1999), at

1
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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the MIT Lincoln Lab by collecting five weeks of network tra�c in an emu-176

lated network environment and by including di↵erent types of attacks. In [8]
the Authors show that the data provided by DARPA is inappropriate for sim-
ulating actual network environments. CICIDS2017 [13] is a security dataset
that is gaining a strong popularity. It was released in 2017 and publicly avail-180

able for researchers; it includes benign tra�c and many recent attacks. The
extraordinary di↵usion of CICIDS2017 is also due to its structure and orga-
nization. Its Authors o↵er a complete suite of tools and resources, ranging
from pcap to csv files that provide ready-to-use labeled flows for those who184

want to apply machine learning techniques. In addition, Authors provide CI-
CFlowMeter [19], which allows to produce network flows from raw pcap files.
Other popular datasets that contain non-obsolete attacks are UNSW-NB15
[20], ISCXIDS2012 [21], UGR’16 [22]. The interested reader is referred to [6]188

for a survey of literature on intrusion detection datasets.
Datasets selection. In the context of this paper we assess five datasets:

CICIDS2017, ISCXIDS2012, NDSec-1 2016, MILCOM 2016 and SUEE 2017.
All these datasets will be presented in Section 5.1 along with related DoS192

attacks. The datasets were selected because –di↵erently from others– they
provide network tra�c data collected under attacks in the form of pcap files,
which we need to “relive” the attacks by means of our replay tool.

2.2. Denial of Services: background and literature196

Denial of Service (DoS) attacks pose a significant threat to the avail-
ability of network services [9]. In the broad sense of the term, a DoS attack
aims to cause the unavailability of the victim system to legitimate users [23].

Starting from this common purpose, there are many DoS variants that200

give the attack di↵erent shapes and features. Over the years, DoS surveys
and taxonomies, such as [24], have been proposed. A first conventional and
coarse-grained classification of DoS attacks involves the identification of two
categories: bandwidth depletion attacks and resource depletion at-204

tacks [25], [24]. The former aims to consume the entire bandwidth of the
victim system with unwanted tra�c, while the latter aims to consume all
the resources of the victim, such as memory, sockets or CPU time. It should
be noted that while in bandwidth depletion attacks any additional malicious208

message on the network contributes to the e↵ectiveness of the attack (con-
suming bandwidth), the same does not happen for resource depletion attacks.
In fact, a message may not be able to consume additional resources on the
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target server (note that many defense mechanisms work exactly this way, pre-212

venting useless consumption of resources). In order to accomplish resource
depletion attacks, the attackers can follow two di↵erent approaches. In par-
ticular, they might exploit network, transport and application layer protocol
vulnerabilities to hit the victim (protocol exploit attack) or send malformed216

packets with the aim to mislead the victim and crash the system (malformed
packet attack) [24].

In our paper the focus is on DoS protocol exploit attacks, which exploit
the weaknesses of network layer protocols as Transmission Control Protocol220

(TCP) or some application layer protocols as Hypertext Transfer Protocol
(HTTP). Typical attacks belonging to this category are: TCP SYN, HTTP
Flood and Slow HTTP attacks [24]. TCP SYN (also known as SYN flood)
exploits part of the normal TCP three-way handshake to consume resources224

on the targeted server by making it unresponsive. An HTTP flood attack, in-
stead, is designed to overwhelm a targeted server with many HTTP requests.
Finally, Slow HTTP attacks slowly consume all of the resources of the vic-
tim. TCP SYN, HTTP Flood and Slow HTTP are the attacks contained in228

most of the public datasets that we selected for our experiments.
Modern machine learning techniques have been shown e↵ective in intru-

sion detection; as such, a wide literature on the detection of DoS attacks has
been recently produced [26]. For example, a machine-learning-based DoS232

detection system is presented in [27]. The Authors use an inference-based
approach and the detection rate achieved is 96%. Qu et al. [28] propose
the statistic-enhanced directed batch growth self-organizing mapping (SE-
DBGSOM), a recent model based on self-organizing maps (SOM), for DoS236

attack detection. The proposal is evaluated on the CICIDS2017 dataset. In
order to solve the challenges in DoS detection, Nguyen et al. [29] propose
an intrusion detection system that exploits a convolutional neural network
model. The Authors evaluate the performance of the proposed method us-240

ing the datasets UNSW-NB15 and NSL-KDD. The results are valuable as
compared to the state-of-the-art DoS detection methods. Sacramento et al.
[30] propose FlowHacker, which aims to detect malicious tra�c on the top of
network flows by capitalizing on unsupervised machine learning and threat244

intelligence: the approach is validated with both the ISCX public dataset and
real data by an Internet service provider. Finally, in [31] the Authors propose
a DoS anomaly detector that uses a deep autoencoder as a core component.
The problem is treated as a semi-supervised task, and the reference dataset248

is again CICIDS2017. The concept of adversarial risk is spreading widely in
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computer and network security. In recent years, many solutions that exploit
adversarial machine learning techniques have been documented in the liter-
ature. In [32], for example, di↵erent DoS adversarial attacks are studied in252

order to bypass two trained ANN classifiers. Adversarial DoS samples are
e↵ective and the attack is successful with a few queries.

2.3. Network tra�c replay tools

Several network tra�c replay tools have been produced for analysis pur-256

poses so far. Replay tools can be either stateful or stateless. A stateful

tool –as opposite to stateless– manages the state of the connections dur-
ing replay; moreover, the content of replayed packets is adapted to fit the
specific network configuration of the system under test. Other tools provide260

for payload “re-generation”, while others do not alter the payload of the
original packets. An additional classification encompasses trace-based replay
and statistical-based replay. Trace-based replay replicates the content and
timing of previously-collected tra�c traces. Statistical-based replay, in-264

stead, adopts a packet generation processes based on statistical models. The
statistical information, such as overall packet frequency and timing between
packets, is obtained from the original capture and re-generated traces are
similar to the original ones. It is worth noting that tra�c generator tools as268

Trex2 or D-ITG [33] are not intended for replay. These tools aim to generate
realistic tra�c by replicating a previous capture, but do not establish actual
connections with the target servers.

Among existing tools for tra�c replay, it is worth to mention TCPOpera272

[34], which implements a statistical-based replay approach, conceived for a
stateful emulation of TCP connections. It analyzes a network trace in order
to collect information beforehand; then it creates a statistical model of the
identified events and generates synthetic tra�c from the model. Another276

replay tool is TCPivo [35]. It is a stateless and trace-based replay engine
designed for high-performance packet replay. TCPivo leverages pre-fetching
techniques to maintain timing accuracy for high speed traces. It also pro-
vides an option to replace the packet payload with null padding, with the280

aim to increase the speed at which the packets can be replayed. DETER [36] is
a stateful replay tool. It is essentially used to make diagnoses, as it replays
selected packets in order to reproduce performance issues with low overhead.

2
https://trex-tgn.cisco.com
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Tool Stateful Payload Approach

TCPOpera Yes original payload statistical-based
TCPivo No re-generated trace-based
DETER Yes re-generated trace-based

tcpreplay No original payload trace-based
tcpliveplay Yes original payload trace-based

RELIVE Yes original payload trace-based

Table 1: Comparison of the replay tools.

A tool that focuses on web server testing is Monkey, which replays web ap-284

plication tra�c by emulating the TCP stack. It aims to infer delays caused
by the client, the applications, the server, and the network.

Close to RELIVE –the tool proposed in this paper– there are tcpreplay3

and tcpliveplay4, which follow a trace-based approach. The former is a288

command-line tool that uses previously captured traces in pcap format. In
particular, it replays tra�c traces at a desired rate without modifying the
transport layer header and the payload of a packet. As a result, tcpreplay is
stateless and does not support synchronizing TCP sequence numbers and ac-292

knowledgements. Although tcpreplay replays the tra�c towards a server,
it does not really communicate with the server. The lack of communica-
tion with the server is well known by the community5. For these reasons,
tcpreplay proved to be ine↵ective in our testbed, since we had to deal with296

bidirectional TCP streams that require synchronization of sequence num-
bers and acknowledgements. On the other hand, tcpliveplay –included
in the tcpreplay suite– was designed to overcome this issue. It statefully
replays packet captures by generating updated TCP sequence numbers and300

acknowledgments. The use of tcpliveplay in our testbed has not produced
the expected outcome. The existence of issues precluding the proper func-
tioning of the tool is also confirmed and highlighted by ongoing bug fixing
activity moved by the community6.304

Table 1 summarizes the main features of RELIVE with respect to existing

3
https://tcpreplay.appneta.com

4
https://tcpreplay.appneta.com/wiki/tcpliveplay-man.html

5
https://stackoverflow.com/questions/37648135

6
https://github.com/appneta/tcpreplay/issues/540
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Figure 1: Experimental testbed.

tools. We follow a stateful replay approach starting from tra�c data available
in pcap files. At the time being, it is conceived as a lightweight and ready-
to-use solution for replaying and assessing DoS attack traces contained in308

public intrusion detection datasets.

3. Testbed and Analysis Method

Our study is based on direct measurements with a victim web server
during DoS attacks. The victim is monitored during the progression of the312

attacks in order to collect a variety of service metrics. In the following we
present the experimental testbed, the service metrics and a capacity analysis
aiming to properly tune the experiments. The testbed hinges on RELIVE,
which will be thoroughly described and validated in Section 4.316

3.1. Experimental Testbed

Experiments are conducted in a private network infrastructure at the Uni-
versity of Sannio. The experimental testbed consists of three Ubuntu 18.04
LTS nodes, equipped with Intel Xeon E5-2650V2 8 cores (with multithread-320

ing) 2.60 GHz CPU and 64 GB RAM within a local area network (LAN)
over 56Gb/s Infiniband. Nodes and experimental procedure are described
according to Figure 1.
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The “victim” node hosts an installation of the Apache web server 2.4.29,324

which is a significant case study, given its widespread use. It is currently
adopted from personal blogs to websites serving a large base of users; more-
over, it is a typical attack target in many public intrusion datasets. This web
server supports a variety of modules –including security-related capabilities–328

that can be enabled/disabled by suitable configuration of the baseline server
installation. Among the variety of modules, reqtimeout

7 is strongly per-
tinent to the context of this study. According to the documentation, the
module is available since Apache HTTPD 2.2.15 –thus April, 20108– and332

allows to set timeouts and minimum data rates for receiving requests. The
module can mitigate some DoS attacks and is typically enabled by default in
the baseline server after installation from the standard Ubuntu repository,
which means that its disablement requires explicit changes of the configura-336

tion by the user. As shown later on in this paper, we conduct the experiments
both in case of no and with reqtimeout enabled for the sake of comprehensive
evaluations. In this respect, it is worth noting that the authors of none of the
datasets assessed in this study make it clear whether reqtimeout (or any other340

defense mechanism) was enabled at the time the attacks were conducted.
The “attacker” node is intended to generate DoS tra�c data aiming

to disrupt server operations. The node underlies two usage modes:

attack emulation: direct emulation of DoS attacks by means of state-344

of-the-art tools;

attack replay : replay of prerecorded attack tra�c from a previous cap-
ture available in a packet data file by means of RELIVE.

Usage modes follow an exclusive OR (i.e., XOR in Figure 1) policy, which348

means that –at a given time– either there is no DoS tra�c at all through
the LAN or, if any, it is generated exclusively in one of the modes. The
attacker node features also an instance of tcpdump, which is used to capture
the tra�c between the attacker and the victim in a packet data file. We352

rely on a mixture of attack emulation and attack replay to demonstrate the
e↵ectiveness of RELIVE in Section 4, while existing datasets are assessed
through attack replay in Section 5.

7
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

8
https://archive.apache.org/dist/httpd/
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The “client” node hosts httperf9 and the controller. The former is356

a well-known load generator. It is used here to probe the web server by
gathering convenient service metrics that summarize its operational status.
The latter, i.e., the controller, automates and orchestrates the execution of
the experiments, which consist of the following steps, shown in Figure 1:360

1. experiment setup: cleaning up the logs of the web server (i.e., access
and error log of the server), boot of the web server and tcpdump;

2. metrics collection: generation and storage of the service metrics by
means of httperf during the progression of the attack;364

3. attack : execution of a DoS attack by either a dedicated tool or reliving
a previous capture; the web server is now exercised with benign HTTP
requests from httperf –referred to as the load in the following– and
DoS tra�c;368

4. experiment completion (not represented in Figure 1 for better readabil-
ity): shutdown of either the attack tool or RELIVE, httperf, tcpdump
and web server, storage of the packet data file, service metrics and event
logs for subsequent analysis, reboot of the nodes to ensure independent372

experimental conditions prior the next run.

It is worth pointing out that the hardware and software of our testbed are
more recent and possibly powerful than the ones used for dataset collection
a few years ago. Depending on the type of attack performed, this may376

contribute to higher server availability and lower response times than in the
“original” environment.

3.2. Service Metrics and Capacity Analysis

The controller continuously runs httperf to probe the web server under380

attack and to collect service metrics at regular intervals of time. Noteworthy,
httperf makes it possible to set a desired level of load consisting of HTTP
requests in order to exercise the target server. The load (L) submitted
to the server is measured here in HTTP requests per second (reqs/s in the384

following). In response to the load, httperf generates several convenient
metrics. In this study we focus on (i) reply rate or throughput (T),
i.e., HTTP requests accomplished by the web server within the time unit
(measured here again in reqs/s) and (ii) response time (RT), i.e, mean388

9
https://github.com/httperf/httperf
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(a) throughput (T) (b) response time (RT) (c) throughput loss (TL)

Figure 2: Capacity analysis of the web server.

time taken to serve a request measured in milliseconds (ms). We complement
the analysis by computing a derived metric, i.e., throughput loss (TL), as
follows:

TL =
L� T

L
· 100 with L � T and L > 0 (1)

TL is the percentage of HTTP requests out of the incoming load L that are392

not accomplished by the web server within the time unit. Di↵erently from
T, TL varies within [0,100]%.

We conduct a capacity analysis of the web server in order to deter-
mine the maximum load that can be handled by the server. Later on in396

the experimental section of the paper, this is useful to assure that a poten-
tial performance loss of the server is caused by a DoS attack rather than
an accidental circumstance caused by badly tuned load. During the capacity
analysis the web server is exercised solely by means of httperf, which means400

there is no attack activity. We measure T, RT and TL obtained in response
to increasing values of L: for each level of L we execute 30 repeated runs of
httperf to collect a statistically significant sample of the metrics.

The knee capacity [37] of the server in our testbed is reached around404

L=10,000 reqs/s, as shown in Figure 2a, where the throughput stops growing
linearly as a function of L. After the knee, the throughput saturates and T<L:
accordingly, both RT and TL increase rapidly as a function of the load, as
shown in Figure 2b and 2c, respectively: for example, when L=20,000 reqs/s408

we obtain RT=4 ms and TL close to 50%. When the web server is free from
a concurrent attack and it is operated below the knee capacity we expect

13



Figure 3: RELIVE: conceptual overview.

T⇡L and in turn TL⇡0%, which means no loss of HTTP requests; on the
other hand, a value TL>0% could point out the presence of a DoS attack,412

because in our controlled testbed the only source of legitimate activity is the
“client” node.

4. RELIVE: Implementation and Assessment

Our support tool allows to relive –hence its name– previously-captured416

tra�c made available in the form of packets in a file. We use a stateful
approach by instantiating actual connections towards a desired destination
Internet Protocol (IP) address. In the context of this study RELIVE is
leveraged to replay DoS attack tra�c against the victim web server in the420

controlled testing environment presented above, making it possible to repro-
duce and measure its e↵ects at application-level.

4.1. Replay Approach

Figure 3 shows a conceptual overview of RELIVE. TCP packets, which424

were originally sent to a given destination, are fed to the tool and “relived”
towards a user-supplied destination IP address over brand new sockets and
connections. Runtime information on live sockets and connections is main-
tained through a key-value lookup table (shown in Figure 3), which stores428

the mapping between “original” socket port numbers (i.e., the source port of
the packets in the file) and “live” port numbers (i.e., the ports of the sockets
used to actually relive the tra�c). The tool is implemented in python, lever-
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—– start connection packet (SYN) —–

09:07:05.766440 IP 192 . 1 6 8 . 5 6 . 1 0 2 . 39842 > 192 . 1 6 8 . 5 6 . 1 0 1 . http : Flags [S] ,

seq 2633020550 , win 64240 , options [ . . . ] , length 0

—– push data packet (PSH) —–

09:07:05.766728 IP 1 92 . 1 6 8 . 5 6 . 1 0 2 . 39842 > 1 92 . 1 6 8 . 5 6 . 1 0 1 . http : Flags [P.] ,

seq 0 : 19 , ack 1 , win 502 , options [ . . . ] , length 19 : HTTP: GET /?12 HTTP/1.1

Figure 4: Example SYN and PSH packets obtained with tcpdump -r.

aging dpkt10, i.e., a module for packet creation and parsing with definitions432

for the basic TCP/IP protocols. The packet format expected by RELIVE is
pcap, LINKTYPE ETHERNET link-layer header type, as the one typically gen-
erated by tcpdump11. It is worth noting that other packet formats, such
as pcap-ng and LINKTYPE LINUX SLL link-layer header type, can be adapted436

to RELIVE with minor e↵ort by means of the widely-used utility programs
editcap and tcprewrite, as we did in our experiments.

RELIVE scans the input data file (main loop, leftmost part of Figure
3) in order to extract some key fields of the packets, i.e., timestamp, source440

port, flag, and data. Figure 4 shows two example packets obtained by means
of tcpdump, i.e., start connection (SYN) and push data (PSH); the fields of
interest are enclosed in a box for better visualization. At a given time, tra�c
replay proceeds according to the fields of the packets and the status of the444

lookup table, named liveSockets in the following, whose keys are positive
integers and values are all set to -1 before the beginning of the scan. Given a
packet, its source port, srcport, is used as the key to access liveSockets:

if the value corresponding to the key is -1 then a new socket is in-448

stantiated on-the-fly in the case of a SYN TCP packet. The socket
is connected to the target destination and stored in the lookup table,
which means a mapping between the “original” and “live” port number
has been established, as depicted in Figure 3 (. symbol);452

otherwise, i.e., if exists a mapping, RELIVE will mimic the socket
operation intended by the TCP packet by means of a suitable python
method (e.g., send, shutdown, close), such as sending data for a PUSH

10
https://dpkt.readthedocs.io/en/latest/

11
http://www.tcpdump.org/linktypes.html
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packet (the data to be sent are extracted beforehand from the packet456

itself), finishing the connection for a FIN packet, and so forth.

As for the timestamps that accompany the packets, shown in Figure 4,
they are used by RELIVE to regulate the speed of the scan. In fact, op-
erations described above do not progress at the maximum speed with no460

awareness of time; rather, they are deferred based on the di↵erence between
the timestamp of a given packet and its predecessor in the file. This approach
allows RELIVE to emit the packets with the same timing of the original se-
quence, as recorded in the input data file.464

Overall, the stateful replay approach described above capitalizes on the
State behavioral design pattern [38], where the outcome of the set of opera-
tions –represented by the possible values of the TCP flag field in our context–
depends on the state of the mapping, i.e., whether a given value in the table468

equals -1 or not, and the state varies during the execution based on the
occurrence of specific operations. Noteworthy, the State design pattern is
widely used to specify and program network protocols.

4.2. Empirical Assessment472

The functioning of RELIVE is assessed by direct emulation and replay
of various DoS attacks. To this aim, we use publicly-available scripts and a
command line utility program, which are widely-used by the security com-
munity, as the research groups that published the datasets addressed by our476

paper. Attacks and pertinent information on the corresponding tools are
listed below:

hulk: it is conceived as an HTTP flood aiming to overwhelm a given
web server by continuously requesting URLs. The strength of Hulk is480

the ability to produce patterns that cannot be easily detected. The
core idea is to generate a unique pattern at each and every request by
increasing the load on the web server. The attack leverages di↵erent
strategies. One of these is the obfuscation of source client. This is ac-484

complished by using a list of known user agents and, for every suitably
crafted request, the user agents is a random value out of the known
list. One of the most popular implementations is grafov Hulk12, used
for our tests, which is a python script also available in Go language.488

12
https://github.com/grafov/hulk
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TCP flood: it is another popular DoS attack and well-known to the
community. The attacker sends TCP connection requests locking the
available ports on the server and causing incapability to accept legit-
imate TCP connection requests from other hosts; therefore, it can be492

considered as flooding attack. For our experiments we used the well-
know Leeon123 TCP flood script13. It is a Python script that allows
to launch a TCP flood attack against the victim machine in seconds.

slowloris: it allows to launch a slow DoS attack against a target496

server. This class of attacks uses low-bandwidth approaches, which
exploit a weakness in the management of TCP fragmentation of the
HTTP protocol: it requires HTTP messages to be completely received
before they are processed. In order to accomplish this attack, we used500

the gkbrk slowloris script14. After having established a number of con-
nections to the target server, the script keeps them alive as long as
possible. This task is accomplished by sending keep-alive headers on
all connections at 15 s intervals. If the server closes a connection, this504

is then restored by keeping constant the total number of connections.

slowhttptest: it is a highly configurable tool that can be used to gen-
erate slow DoS application-layer attacks15. We use slowhttptest in
the “slowloris” mode, which allows to send incomplete HTTP requests508

to the target server. Both slowloris and slowhttptest implement a
slow attack. We use both, in order to validate RELIVE with respect to
di↵erent implementations of the same base behavior. It is worth noting
that the results produced by the two tools –shown in the following– are512

di↵erent and that RELIVE correctly reproduces both of them.

SYN flood: it is one of the most known attacks for TCP stacks, which
capitalizes on a weakness of the TCP handshake. The weakness is
due to the fact that the server allocates resources before the client: in516

consequence, a client may forge multiple malicious packets (potentially
spoofing IP addresses) in order to cause the victim server to allocate
a large amount of resources (as socket ports and memory). At the
state-of-the-art, many operating systems, in particular Linux, use the520

13
https://github.com/Leeon123/TCP-UDP-Flood

14
https://github.com/gkbrk/slowloris

15
https://tools.kali.org/stress-testing/slowhttptest
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syn-cookie technique [39] as a countermeasure; this is typically applied
as a default by the kernel, making the most part of real-world servers
protected by the attack. The attack is emulated with a public python
script16; moreover, we had to purposely disable the syn-cookie capabil-524

ity17 in order to make the attack e↵ective against the server.

Overall, the attacks underlie a mixture of di↵erent DoS protocol exploit
attacks; more important, they elicit quite di↵erent outcomes by the victim
web server, as shown in Section 4.2.1. For each attack listed above, we528

conduct two independent experiments. The former (denoted by “original” in
the following) consists in performing the attack against the web server while
capturing the network packets in a pcap data file (attack emulation mode
in Section 3.1); the latter (denoted by “replay” in the following) is done532

by replaying the pcap file –thus the by-product of the former experiment–
by means of RELIVE (attack replay mode in Section 3.1). Moreover, each
attack and its corresponding replay are run both in case of no and with the
reqtimeout module enabled, which sum up to total 10 original-replay paired536

experiments. The duration of each experiment is set to 600 s, time interval
which is long enough to collect a large sample of service metrics generated
by httperf, as described in Section 3.1. Moreover, in all cases the attack
starts at t=15 s since the beginning of the experiment and the web server is540

exercised with a load of L=1,000 req/s , rate that can be safely handled at
no TL according to the capacity analysis presented in Section 3.2.

4.2.1. Analysis of the Throughput Loss (TL)
Figure 5 shows how TL varies during the progression of the attacks in544

case of no (Figure 5a, 5c, 5e, 5g, 5i) and with (Figure 5b, 5d, 5f, 5h, 5j)
reqtimeout enabled; the x-axis represents the time since the beginning of the
experiment. Each plot provides TL for the original attack (•-marked series);
moreover, we superimpose TL obtained with the corresponding replay of the548

attack (⇥-marked series) for better visualization purposes.
It can be noted that the attacks cause a variety of responses by the victim

web server, which allow to gain insight into the e↵ectiveness of RELIVE in
face of di↵erent operating conditions. For example, hulk (Figure 5a and 5b)552

appears to be silent up to 150 s until it saturates the server by the end of the

16
https://github.com/Leeon123/Simple-SYN-Flood

17
https://nixcp.com/enable-tcp-syn-cookie-protection-linux/
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(a) hulk (no reqtimeout) (b) hulk (with reqtimeout)

(c) TCP flood (no reqtimeout) (d) TCP flood (with reqtimeout)

(e) slowloris (no reqtimeout) (f) slowloris (with reqtimeout)

(g) slowhttptest (no reqtimeout) (h) slowhttptest (with reqtimeout)

(i) SYN flood (no reqtimeout) (j) SYN flood (with reqtimeout)

Figure 5: Throughput Loss (TL) for each attack and its replay.
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experiment, where TL approaches 100%. TCP flood (Figure 5c and 5d) is
characterized by periodic spikes with a maximum TL=43.4%. At the other
end of the spectrum, both slowloris and slowhttptest show the typical556

“on-o↵” behavior of low-bandwidth attacks in lack of proper defense (no
reqtimeout in Figure 5e and 5g, respectively): in fact, TL abruptly reaches
100% as soon as the server is saturated by the attack; similar considerations
hold for the SYN flood attack, which we launched for three times during560

the progression of the experiment at t = 15 s, 256 s and 504 s. As for the
impact of the reqtimeout module, we observe that it is ine↵ective for hulk,
TCP flood and SYN flood, while it mitigates slow attacks at some extent,
as can be noted in Figure 5f and 5h. The most interesting outcome is that564

the TL measured during the progression of a replay experiment is close to
the corresponding original attack both for no and with reqtimeout runs.

The visual test, which provides exploratory insights into the capability of
RELIVE at correctly “reliving” previously-captured attacks, is supplemented568

here by more robust statistical analysis. TL values measured for each original
attack and its paired replay experiment are seen as two time series consisting
of n observations, namely ot and rt, respectively. In order to model the
relationship between ot and rt, we compute the cross correlation function572

(CCF), i.e., the set of correlations between ot and r(t+h) that are obtained
by varying the integer h, i.e., the lag between the series, in �n<h<+n.
Eq. 2 shows how the CCF of ot and rt is computed for a given lag h. The
numerator, i.e., co,r(h), is the cross variance of ot and rt for the lag h; it is576

divided by the product of the standard deviations of ot and rt, i.e., �o and
�r, which are the square roots of their respective variances co,o(0) and cr,r(0)
in Eq. 2.

CCFo,r(h) =
co,r(h)p

co,o(0)cr,r(0)
=

co,r(h)

�o�r
(2)

We obtain �1CCF+1. Intuitively, the relationship between the time580

series is deemed strong if |CCF|�0.80, moderate if 0.50<|CCF|<0.80 and
weak if |CCF|0.50 [40].

Figure 6 shows the CCFs for each pair of series in Figure 5 with �20 h
+20 by step 1; horizontal dashed lines denote the values beyond which the584

correlations are statistically di↵erent from zero. For example, Figure 6a
shows the CCF corresponding to the series in Figure 5a; the same correspon-
dence applies for all the pairs of plots with the same caption. It should be
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(a) hulk
(no

reqtimeout)

(b) TCP flood

(no
reqtimeout)

(c) slowloris
(no

reqtimeout)

(d)
slowhttptest

(no
reqtimeout)

(e) SYN flood

(no
reqtimeout)

(f) hulk
(with

reqtimeout)

(g) TCP flood

(with
reqtimeout)

(h) slowloris
(with

reqtimeout)

(i)
slowhttptest

(with
reqtimeout)

(j) SYN flood

(with
reqtimeout)

Figure 6: Cross correlation function (CCF) of each attack and its paired replay experiment.

noted that we aim to demonstrate that original and replay TL series happen588

with the same timing since the beginning of the experiment: this informa-
tion is summarized by the CCF value computed at lag=0, which correlates
ot and rt with no lag (i.e., h=0), and is annotated in the top-right corner of
each plot in Figure 6. In all cases the CCF is significantly higher than 0.80:592

as such, correlation between the time series is strong. As for the remaining
lags in Figure 6, they are intended to show that the maximum CCF occurs
exactly at lag=0, which means the replay is not behind/ahead the original
attack.596

Other typical statistical characterizations encompass sample mean,
standard deviation and 95% confidence interval (CI) of the TL observations,
which are shown in Table 2 for a subset of the attacks where this type of
characterization is more suited (e.g., no “on-o↵” behavior). In all cases, it600

can be noted that the sample mean of TL during the original attack is within
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Table 2: Summary of TL statistics for a subset of the attacks and their replay.

mean standard 95% confidence
deviation interval

TCP flood original 18.0 10.7 (14.7, 21.4)
(no reqtimeout) replay 16.9 10.2 (13.7, 20.1)
TCP flood original 17.9 9.6 (15.0, 20.9)

(with reqtimeout) replay 18.4 10.5 (15.1, 21.6)
slowloris original 90.9 14.3 (87.3, 94.6)

(with reqtimeout) replay 91.4 11.6 (88.4, 94.4)

(a) TCP flood

(no reqtimeout)
(b) TCP flood

(with reqtimeout)
(c) slowloris
(with reqtimeout)

Figure 7: Paired TL boxplots for a subset of the attacks and their replay.

the CI of the replay and viceversa, which means that the samples are not
statistically di↵erent. This finding is further confirmed in Figure 7, where
it can be noted that the boxplots of the TL observations strongly overlap604

(�-marked points denote measurement outliers). Overall, given the CCF and
the statistical characterization above, it can be reasonably claimed that the
impact of the original attack and its replay at the application-level are not
statistically di↵erent with respect to the set of attacks in hand.608

4.3. Non-Goals of the Current Implementation

At the current stage of development, RELIVE is strongly driven by the
objectives of the paper and our current research. Here the focus is on a core
set of capabilities that allow to reproduce the significant class of DoS proto-612

col exploit attacks. Accordingly, non-goals of our current implementation
include UDP-based attacks, further protocols beside HTTP or replication of
documented vulnerabilities, just to mention a few. While RELIVE is indeed
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capable to replay TCP tra�c, application-level “e↵ects” of the replay ulti-616

mately depend on the protocols in hand, which require dedicated design. For
example, an attempt to replay SSH tra�c will likely lead to authentication
issues. Regarding vulnerabilities –also related to DoS– there exist specialized
databases and tools, such as IXIA Perfect Storm18. Given the ever-increasing620

diversity of attacks, victim applications and operating conditions, RELIVE
will serve as a long-term toolset with the potential for further developments
and usage modes that go beyond the scope of the current paper.

5. Experimental Results624

We present the analysis of DoS tra�c from public datasets. Tra�c is
replayed under di↵erent combinations of key factors in our testbed according
to the attack replay mode presented in Section 3.1. Assessed datasets, results
and practical implications of the findings are presented in the following.628

5.1. Datasets description

The main features of the datasets are presented below. The interested
reader is referred to the link and reference paper reported for each dataset.

CICIDS2017
19 is a public dataset proposed by the research team of the632

Canadian Institute for Cybersecurity, which includes both normal tra�c and
attacks at the state-of-the-art when data were collected [13]. The dataset is
available both in packet format (pcap) and bidirectional flow labeled format
(csv). The data capture period started at 9 a.m., Monday, July 3, 2017 and636

ended at 5 p.m., Friday, July 7, 2017, for a total of 5 days. Monday is the
“normal day” and contains only benign tra�c; DoS attacks addressed by our
paper, such as hulk, slowloris and slowhttptest belong to the capture of
Wednesday, i.e., the “DoS day”. The attacker was a Kali Linux node and640

the victim an Ubuntu 16.04 system with an Apache web server.
ISCXIDS2012

20 is a public dataset for intrusion detection purposes,
providing normal and malicious network tra�c [21]. It is available in packet-
based (pcap) and bidirectional flow-based (xml) formats. ISCXIDS2012 was644

created by capturing tra�c in an emulated network environment over one
week. In particular, the capture period runs from 11 June 2010 to 17 June

18
https://www.ixiacom.com/products/perfectstorm

19
https://www.unb.ca/cic/datasets/ids-2017.html

20
https://www.unb.ca/cic/datasets/ids.html
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2010. The normal activity was captured on 11, 12 and 16 June; on the
other days –in addition to the normal tra�c– the dataset contains di↵erent648

attacks. Since our focus is on DoS, we use the data collected on June 14,
2010, referred to in the dataset as HTTP DoS. The victim server was an
Ubuntu 10.04 system with an Apache web server (version 2.2.9).

NDSec-1 2016
21 is a public-domain dataset, designed in 2016 as an652

attack composition for network security and proposed by the Network and
Data Security Group (NDSec) of the Fulda University of Applied Sciences
[41]. It provides packet traces (pcap) as well as log files documenting the
ground truth and relies on bidirectional flows captured using the flow exporter656

YAF. For our tests we selected HTTP flood and SYN flood attacks; HTTP
floods were carried out using the Apache HTTP server22 benchmarking tool.

MILCOM 2016
23 is a public-domain dataset, generated for the Ap-

plied Communication Sciences’ MILCOM 2016 paper [42]. The dataset was660

created to support reproducible research experiments that address security
challenges. The dataset, available in pcap format, is arranged in 5 sub-
categories: A, B, C, D, E. The malicious activity for datasets A through D
consists of malware implant and the operation of the ACS pseudo botnet.664

The malicious activity for dataset E comprises DOS attacks, including the
slowloris and SYN flood used for our experiments.

SUEE 2017
24 is a public-domain dataset which contains both benign

and malicious tra�c relative to the web server of the Student Union for668

Electrical Engineering at Ulm University [43]. Released in 2018, the SUEE
2017 dataset is distributed in pcap format. It is worth pointing out that the
dataset is not labeled; however, the attacker IP ranges are clearly disclosed by
the proposing authors, which allowed us to identify DoS tra�c. The dataset672

contains slow attacks.

5.2. Initial Experiments

We use RELIVE to replay DoS tra�c data from the public datasets listed
above against the web server in the controlled testbed in Figure 1 (attack676

replay mode in Section 3.1). Each attack is replayed twice, with two inde-
pendent experiments: no and with the reqtimeout module enabled at the

21
https://www2.hs-fulda.de/NDSec/NDSec-1/Files/

22
http://httpd.apache.org/docs/2.4/programs/ab.html

23
https://www.netresec.com/?page=ACS_MILCOM_2016

24
https://github.com/vs-uulm/2017-SUEE-data-set
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(a) CICIDS2017 hulk (b) NDSec-1 2016 HTTP flood

(c) MILCOM2016 SYN flood (d) NDSec-1 2016 SYN flood #1

(e) ISCXIDS2012 HTTP DoS (f) NDSec-1 2016 SYN flood #2

(g) CICIDS2017 slowloris (h) CICIDS2017 slowhttptest

(i) MILCOM2016 slowloris (j) SUEE2017 slowloris

Figure 8: TL under DoS attacks against the web server.
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server-side, respectively. The load generated by the “client” node –aimed to
probe the operational status of the server and to infer the service metrics–680

is set to L=1,000 req/s. It is worth noting that this L rate is intentionally
much lower than the knee capacity of the server, in order to assess the impact
of the attacks. Further considerations on increasing loads are presented in
Section 5.4.684

Figure 8 shows how TL varies for the attacks. For each plot –corresponding
to a given dataset and attack– the TL series obtained during the no re-
qtimeout experiment (•-marked series) is superimposed to with reqtimeout
(⇥-marked series): as such, the reader can compare the impact of the same688

tra�c data in face of di↵erent defense scenarios. Attacks start at t=15 s
since the beginning of the experiment. Overall, each attack has its own pe-
culiarities, such as impact on the throughput, duration and burstiness. For
example, CICIDS2017 hulk (shown in Figure 8a) causes low TL, i.e., the692

sample mean is 5.21 within [4.06, 6.36] at 95% confidence for no reqtimeout.
However, it is not a↵ected by the defense module, where TL has a mean equal
to 5.38, within [4.25, 6.51] at 95% confidence, and so it is not statistically
di↵erent from the former run. On the other hand, NDSec-1 2016 SYN flood696

#1 (shown in Figure 8d) is strongly e↵ective, i.e., TL=100% through all the
progression of the attack, but it su↵ers from reqtimeout, which –if enabled–
is capable to almost suppress the attack. As for the slow attacks in Figure
8, they all appear e↵ective at saturating the victim server in case of no re-700

qtimeout, i.e., TL=100%, such as Figure 8g and 8h; out of them, MILCOM
2016 slowloris is the only slow attack that remains e↵ective with reqtimeout
enabled.
Finding: DoS attack tra�c provided by public intrusion detection datasets
su↵ers from the presence of reqtimeout, which makes the attacks much less
e↵ective, if not ine↵ective at all.

704

This point is crucial. Again, reqtimeout is a default module enabled at
the installation of the web server and we had to “manually” edit the configu-
ration to exclude the module and to perform the no reqtimeout experiments.
On the other hand, the research groups that published the datasets make it708

clear for none of the attacks whether they manually checked for the presence
of reqtimeout –or any other similar defense module– embedded by the instal-
lation of the victim servers or the operating system. It is worth noting that,
similarly to reqtimeout, we had to manually disable the syn-cookie capability712

of the kernel in order make SYN flood attacks e↵ective against the server;
however, this aspect is not clearly stated in any of the datasets. Inadvertent

26



Table 3: Configuration parameters of the web server.

parameter default adjusted

configuration configuration

StartServers 2 16
MinSpareThreads 25 75
MaxSpareThreads 75 150

ThreadLimit 64 2,048
ThreadsPerChild 25 2,048

MaxRequestWorkers 150 4,096

inclusion of defense mechanisms during tra�c collection can strongly bias the
data released to the research community. In practice, an attempt to learn716

intrusion detection patterns on top of these data may lead to incorrect out-
comes because the behavior of a given attack depends on the specific defenses
in hand.

5.3. Impact of the Configuration720

According to the initial set of experiments presented above, all the attacks
are “apparently” e↵ective in case of no reqtimeout. Nevertheless, there is one
more key aspect –not purposely touched so far– that is strongly overlooked
by the literature on public datasets: the configuration of the victim server.724

Beside regulating the presence or not of supplemental modules for hardening
the installation of a given web server, the configuration makes it possible
to set many other crucial parameters.

For example, in a typical Linux-based installation of the Apache web728

server the configuration can be accessed in several files in the /etc/apache2/
directory. The middle column of Table 3 shows the default values of key
operational parameters that we found after having installed the web server
by means of apt-get install apache2 pointing to the standard Ubuntu732

repository25. It should be noted that the research groups that published the
data assessed in our study do not concretely touch and disclose configuration-
related aspects. Since not stated otherwise, it is reasonable to assume that

25
http://it.archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages
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they conducted the attacks –and collected the related data– with the default736

configuration of the server. The default configuration might not necessarily
reflect “real-life” production servers intended to handle a large base of users;
as such, it is worth investigating whether the e↵ectiveness of the attacks
depends on the actual configuration.740

We edited the configuration of the web server in order to significantly
boost its capacity and multithreading capability, by raising parameters, such
as start servers, thread limit and maximum workers. The result is an ad-

justed configuration, whose settings are shown in the rightmost column of744

Table 3. Figure 9 shows how TL varies during the progression of the attacks
against the web server in case of the adjusted configuration. Analogously to
the experiments in Section 5.2 –conducted with the default configuration–
each attack is replayed twice, i.e., no and with reqtimeout, and the server748

is probed with a “client” load L=1,000 reqs/s in order to gather the ser-
vice metrics. Surprisingly, in many cases the same set of DoS attacks does
not a↵ect at all the throughput of the victim server. For instance, TL=0%
steadily in Figure 9a, 9e or 9j and other similar examples. Only the attacks752

of MILCOM2016 (Figure 9c and 9i) and one SYN flood from NDSec-1 2016
(Figure 9f) are e↵ective to some extent in case of no reqtimeout, with TL
close to 100% at several points. After the activation of reqtimeout, we found
out that only two attacks across all the datasets are still e↵ective (Figure 9c756

and 9f – with reqtimeout series).
Finding: The configuration of the victim server has a major impact on
the actual e↵ect of a DoS attack. Public tra�c data gathered by executing
an attack against the default configuration of the victim server might not
be representative to infer general lessons on the resilience of real-life servers
operated with optimized configurations.
We hypothesize that the research groups that published the datasets observed
an actual performance slowdown of the victim servers in response to attacks:760

as such, they decided to release the data. However, it is reasonable to state
that, in many cases, the slowdown was caused by poorly configured servers
rather than well-crafted attacks. Because of this limitation, the usefulness of
public DoS tra�c data to drive application-level security claims on servers764

or intrusion detection systems is questionable.

5.4. Considerations on the Load

We complement the analysis with an additional set of experiments aim-
ing to account for the load generated by the “client” node. In fact, as well768
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(a) CICIDS2017 hulk (b) NDSec-1 2016 HTTP flood

(c) MILCOM2016 SYN flood (d) NDSec-1 2016 SYN flood #1

(e) ISCXIDS2012 HTTP DoS (f) NDSec-1 2016 SYN flood #2

(g) CICIDS2017 slowloris (h) CICIDS2017 slowhttptest

(i) MILCOM2016 slowloris (j) SUEE2017 slowloris

Figure 9: TL under DoS attacks against the web server (adjusted configuration).
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(a) TL (log scale) (b) RT (log scale)

Figure 10: Service metrics of the web server with L=10,000 reqs/s in attack-free conditions
(adjusted configuration - no reqtimeout).

as (i) potential defense modules and (ii) configuration of the server –both
assessed above– the magnitude of the load is another factor that might a↵ect
the service metrics. Experiments in Section 5.2 and 5.3 are done with a load
L=1,000 reqs/s, which we keep intentionally low; nevertheless, according to772

the results in Figure 2, the server can handle safely much higher values of L.
In this respect, it is worth investigating whether the attacks that seem “ap-
parently” ine↵ective, such as CICIDS2017 hulk (Figure 9a) or ISCXIDS2012
HTTP DoS (Figure 9e), would instead disrupt the victim server when L776

is high. For all the following experiments, the server is operated with the
adjusted configuration and no defense module in place.

We monitor beforehand the service metrics in attack-free conditions

with a load L=10,000 reqs/s –thus slightly above the knee capacity. This780

value of L is strongly relevant because it is the point where the throughput
of the server stops growing linearly according to Figure 2a. Figure 10 shows
TL and RT; the y-axis is given in log scale (and limited to the range [0.5,
10]% for TL) in order to appreciate the value of the metrics. We observe784

a mean TL of 1.05% within [1.02, 1.08] at 95% confidence; RT is 0.4 ms
if not for sporadic spikes. It can be noted that the server su↵ers from a
“natural” performance loss irrespective from any concurrent attack, which is
intrinsically caused by the the high value of load.788

On the other hand, Figure 11 shows the TL and RT obtained by replaying
CICIDS2017 hulk while the server undergoes a “client” load L=10,000 re-
qs/s. The mean TL is 1.21% within [1.16, 1.27] at 95% confidence; similarly,
the mean RT is 0.46 ms within [0.44, 0.47] at 95% confidence. Di↵erently792

from Figure 9a –where TL=0% and L=1,000 reqs/s– CICIDS2017 hulk has
now some e↵ect on the server. Nevertheless, the e↵ect of the attack consists
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(a) TL (b) RT (log scale)

Figure 11: Service metrics of the web server with L=10,000 reqs/s in face of CICIDS2017
hulk (adjusted configuration - no reqtimeout).

(a) Attack-free conditions (b) CICIDS2017 hulk

Figure 12: TL of the web server with L=20,000 reqs/s (adjusted configuration - no req-
timeout).

of negligible fluctuations over the natural performance loss of the server in
attack-free conditions shown in Figure 10. Another interesting observation796

is that the RT caused by the attack is by far lower than the “typical” max-
imum tolerable delay for a response of a web server in order to be usefully
deployed in many practical applications, such as multilayer workflows [44].
Similar considerations hold for much higher values of L. For example, Fig-800

ure 12 (where y-axes are limited to the range [47, 49]% to appreciate the
small variability of TL) shows the TL of the server in attack-free conditions
and under CICIDS2017 hulk with L=20,000 reqs/s : the sample mean of the
former series is 47.7%, while the latter is 47.9%. As in the previous case,804

most of the TL increase is explained by the load itself rather than by the
attack, which sums marginal fluctuations over the attack-free baseline when
the server is pushed beyond its knee capacity.

As for the results obtained by replaying the tra�c from other public808
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(a) ISCXIDS2012 HTTP DoS (b) NDSec-1 2016 Syn flood #1

Figure 13: TL (log scale) of the web server with L=10,000 reqs/s in face of two attacks
(adjusted configuration - no reqtimeout).

attacks, we observe very similar outcomes. Figure 13 shows the TL caused
by ISCXIDS2012 HTTP DoS and NDSec-1 2016 SYN flood #1 under a
“client” load L=10,000 reqs/s. Again, it can be noted that the mean TL is
steadily around 1% (i.e., the attack-free value) if not for sporadic spikes.812

Finding: A DoS attack per se explains only a part of the loss of the metrics
measured for a victim server; as such, it is important to discriminate the
actual impact of the attack from the underlying load. Surprisingly, for the
public datasets assessed in this study we did not observe an “advantageous”
interplay, i.e., more disruptive impact, between attack data and increasing
load.

This finding is extremely relevant. Let us consider a practical example
with CICIDS2017, where the pcap data file of the “DoS day” –July 5, 2017,
used in our work– contains 1,486,069 total packets directed to the victim816

node over 8 hours of capture. The total breaks down into 1,383,651 packets
originated by the attacker node and 102,418 from all the remaining sources;
out of the latter contribution, only 128 packets are directed to the HTTP
destination port 80 of the victim server. In consequence, it can be reasonably820

stated that the victim was serving almost no benign background activity, i.e.,
not related to attacks, at the time CICIDS2017 DoS data were collected. The
lack of benign activity from legitimate clients intertwined with attack tra�c,
does not properly reflect the uncertainty of real-life operations.824

6. Threats to Validity

As for any data-driven study, there may be concerns regarding the validity
and generalizability of the results. We discuss them based on the four aspects
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of validity listed in [45].828

Construct validity. Our analysis is based on five public datasets col-
lected and made publicly available by independent research groups over the
past years. The datasets consist of relevant categories of DoS attacks, which
represent a major threat to the availability of real-life production servers.832

The study builds on experiments and measurements aiming to infer possibly-
general insights about the representativeness of public data and attack tra�c,
which are widely used by the research community on intrusion detection sys-
tems. We are confident that the experimental details provided in the paper836

would support the replication of our study by future researchers and practi-
tioners.

Internal validity. The results and key findings of this paper are based
on both direct emulation and replay of third-party attack tra�c. RELIVE840

has been validated with well-consolidated scripts and utility programs; ex-
periments have been done with several attacks. We have taken into account
di↵erent key factors, such as defense, configuration and load, to provide ev-
idence of the actual impact of the attacks against the victim server. The844

use of such a mixture of diverse datasets and experimental conditions allows
to mitigate strongly internal validity threats. Our experiments are founded
on consolidated software tools and statistical indexes, such as the cross cor-
relation function. The key findings of the study are consistent across the848

datasets and attacks, which provides the analysis with a reasonable level of
confidence.

External validity. Our experiments can be applied to other similar
intrusion datasets that provide network tra�c and packet data files collected852

under DoS attacks. Given the wide spread of network capture programs
and other tools for handling and transforming tra�c formats, replicating
and assessing the impact of previously-captured tra�c data is definitively
feasible in practice. In fact, in this paper we ported the experiments across856

five independent datasets, which mitigates external validity threats. The
only source of overhead is the time needed to isolate DoS tra�c out of wider
network captures that are typically made available by the research groups.
This time depends on the quality of the documentation of the datasets and860

the availability of other key details, such as source and destination of the
attacks, start time and duration of the attacks.

Conclusion validity. Conclusions have been inferred by varying de-
fense, configuration and load. Overall, these aspects are strongly overlooked864

by the literature. In this respect, it is worth noting that we do not de-
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velop around a unique configuration of the victim server; rather, we conduct
repeated experiments in order to obtain a comprehensive picture of the ser-
vice metrics under di↵erent experimental conditions. Comparisons have been868

made across the set of experiments to make sure that our findings have not
been biased by a particular configuration of the victim server. The inferences
made in the paper are consistent across the datasets. Our findings, which
are strongly supported by data, contribute to establish new knowledge in the872

area and are strongly relevant to practitioners.

7. Conclusion

The issue considered in this paper stems from the observation that pub-
lic intrusion datasets are widely used as benchmarks for intrusion detection876

algorithms and tools. Unfortunately, most of the times these datasets lack
relevant information including data collection modalities, testbed configu-
rations and, above all, impact of the attacks emulated. After a thorough
examination of common datasets and of the accompanying information, it880

is almost natural to wonder if tens of proposals in the current intrusion de-
tection literature have just been quite successful to detect attacks that are
harmless for present-day hardware and software systems –being possibly use-
less with more dangerous ones.884

In theory, a successful IDS should be able to detect any attack, whether
it leads to the unavailability of the server or is relatively harmless. We
do not support the position that only e↵ective attacks should be detected,
neglecting all the rest. However, it is a fact that often the network tra�c888

generated under attack can substantially change depending on the server
load and on the defense modules installed on the server [46]. Accordingly,
IDSes may be unable to detect attacks generated in load conditions or server
configuration di↵erent from the ones used for dataset collection.892

In order to evaluate the representativeness of public intrusion datasets,
i.e., to make clear at what extent these datasets can be useful for, we have
reproduced in a controlled environment the DoS attacks in five publicly avail-
able datasets provided with network capture pcap files. This work has en-896

tailed the implementation of RELIVE, a tra�c replay tool specially crafted
to reproduce DoS attacks captured in the datasets. The analysis is limited
to public datasets providing pcap data files and to attacks falling within the
scope of RELIVE, which is addressed in Section 4.3. Whilst the current im-900

plementation is not a one-fits-all approach to replay any arbitrary attack, we
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address a significant class of DoS attacks, which keeps attracting substantial
research e↵orts by the community. In brief, our findings show that sometimes
the DoS attacks performed are harmless –often ine↵ective– against properly904

configured servers. The consequences can be drawn as follows:

the production of an intrusion dataset is definitely a complex matter.
It is not su�cient to set up a realistic testbed and to collect gigabytes
of tra�c produced by tra�c generators and attack tools. The configu-908

ration of the web server in the case of DoS attacks has to be suitably
hardened (who cares about weakened servers?). Hardware and software
configurations have to be fully documented. The e↵ect of the attacks
carried out should be evaluated –it is not necessary to detect harmless912

attacks.

the performance of intrusion detection algorithms and tools cannot be
evaluated solely by the results obtained on present-day datasets. At
least until a new generation of datasets following the principles set out916

above will be available, additional experimentation on realistic tra�c
and environments is indeed necessary to judge the validity of detection
proposals.

In conclusion, our findings contribute to establish new knowledge in the920

area and pose novel open challenges. We hope that this e↵ort will start a
process leading to the construction of more rigorous security datasets. In the
meantime, we are confident that the detection results obtained on currently
available datasets are considered cum grano salis, avoiding to overlook the924

natural limits of partially-undocumented data collections.
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