

NOTICE: this is the author’s version of a work that was accepted for publication in
Expert Systems with Applications. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have been
made to this work since it was submitted for publication. A definitive version was
subsequently published in Expert Systems with Applications, [Volume 191, April
2022, 116263] DOI: 10.1016/j.eswa.2021.116263

© <2021>. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

AutoLog: Anomaly Detection by Deep Autoencoding of
System Logs

Marta Catilloa,⇤, Antonio Pecchiaa, Umberto Villanoa

a
Università degli Studi del Sannio, Benevento, Italy

Abstract

The use of system logs for detecting and troubleshooting anomalies of pro-
duction systems has been known since the early days of computers. In spite of
the advances in the area, the analysis of log files emitted by real-life systems
poses many peculiar challenges. Up-to-date tools, such as log management
and Security Information and Event Management (SIEM) products, capital-
ize on standard data formats, logging protocols and dictionaries of threat
signatures, which hardly fit to logs of industrial and proprietary systems.

This paper addresses the analysis of logs emitted by computer systems
with a focus on anomaly detection. The proposed approach, named Au-
toLog, consists in sampling the logs at regular intervals and to compute nu-
meric scores. Scores collected under normative operations are used to train
a semi-supervised deep autoencoder, which serves as a baseline to classify
future scores. The approach is not constrained by the structure of under-
lying logs and does not need for anomalies at training time. The results
obtained in detecting anomalies of two industrial systems and the public
BG/L and Hadoop datasets widely used as benchmarks, indicate that the
recall of AutoLog ranges between 0.96 and 0.99, while the precision is within
0.93 and 0.98. A comparative study with isolation forest, one-class SVM,
decision tree, vanilla autoencoder and variational autoencoder is conducted
to demonstrate the validity of the proposal.

Keywords: system logs, deep learning, autoencoder, anomaly detection,
cybersecurity

⇤Corresponding author (phone: +39-0824-305805)
Email addresses: marta.catillo@unisannio.it (Marta Catillo),

antonio.pecchia@unisannio.it (Antonio Pecchia), villano@unisannio.it (Umberto
Villano)

Preprint submitted to Expert Systems with Applications October 28, 2021

1. Introduction

System logs are sequences of time-stamped text lines that report on
informational and abnormal events occurring during the execution of a given
system. Almost any computer system appends lines to one or more special4

files –called system logs, log files or just logs, for short– at run-time. Since
the early days of computers, to “grep” log files to search interesting keywords
(e.g., error, denied or unavailable) is a well-established mean to monitor and
assess dependability of computer systems and to gain direct insight into fail-8

ures, anomalies and misuse (Oliner et al., 2012; Cinque et al., 2016). Nowa-
days, many log-related tasks have converged into up-to-date log management
tools and Security Information and Event Management (SIEM) products
(Miller et al., 2010; Bhatt et al., 2014), such as LogRhythm1, Splunk2 and12

Logstash3, which allow to collect and normalize diverse data sources and logs.
More importantly, these tools and products implement real-time monitoring
and alerting capabilities, which are critical for practitioners and administra-
tors to develop situational awareness from large volumes of run-time logs. In16

spite of the “technical” advancements in log management, substantial cogni-
tive work by human experts and system administrators is required to traverse
the logs in order to pinpoint and to correlate relevant lines for forensics and
troubleshooting.20

The e↵ectiveness of log management and SIEM installations is intertwined
with the completeness of the specifications of interesting events, i.e., events
that should be detected and followed up for further inspection. Specifications
may consist in hard-coded catalogues of keywords, regular expressions and24

rules, which are used to scan system logs and to alert analysts and admin-
istrators upon matches. Figure 1 provides a concrete example of rule from
OSSEC4, i.e., an open source log monitoring solution. The rule –coded in
eXtensible Markup Language (XML)– is intended to raise an alert whenever28

the phrase “Client sent malformed Host header” (within the match tag) is
seen in the logs of the Apache web server; the phrase is deemed a potential

1
http://logrhythm.com/products/siem

2
http://www.splunk.com/

3
https://www.elastic.co/products/logstash

4
https://ossec.github.io/docs/manual/non-technical-overview.html

2

1 <rule id= ‘ ‘30107 ’ ’ level= ‘ ‘6 ’ ’>
2 <if_sid>30101</if_sid>
3 <match>Client sent malformed Host header</match>
4 <description>Code Red attack .</description>
5 <info type=”link”>
6 http : // www . cert . org/advisories/CA�2001�19.html
7 </info>
8 <info type=‘ ‘text ’ ’>
9 CERT : Advisory CA�2001�19 ”Code Red” Worm Exploiting
10 Buffer Overflow In IIS Indexing Service DLL
11 </info>
12 <group>automatic_attack ,</group>
13 </rule>

Figure 1: Example of rule from OSSEC (apache rules.xml file).

indicator of a Code Red attack. Current products rely on internal represen-
tation formats (e.g., MDI Fabric and Common Information Model used by32

LogRhythm and Splunk, respectively) and a variety of default log adapters
along with comprehensive catalogs of rules for many standard protocols and
commodity applications that can be encountered in production environments
(e.g., ftp, ssh, telnet, squid, nginx). For other types of proprietary or in-36

dustrial log files, they require users to perform ad-hoc data preparations.
Moreover, default rules must are typically specialized and updated by sys-
tem administrators and practitioners: setting up well-crafted and e↵ective
rules entails substantial threat knowledge by domain experts.40

This paper addresses the analysis of logs emitted by computer systems,
with a focus on the detection of anomalies, such as failures and misuse. We
consider the logs of four real-life systems, which range from an industrial
system in the transportation domain to a microservices-based instal-44

lation implementing a standard multimedia architecture adopted by large
telcos, up to publicly-available system logs from a Blue Gene/L (BG/L) su-
percomputer and a Hadoop cluster. Overall, the systems consist of various
nodes and applications interacting through a network, and strongly rely on48

logs to massively record execution events, traces and dumps of variables. Our
work stems from di↵erent motivations. There exist many classes of systems
where it is hard to fit the concept of pre-established rules, such as the one
shown in Figure 1. Proprietary and vendor-dependent logs, including those52

generated by the industrial and microservices system addressed by our study,
lack standardized practices (Cinque et al., 2018). Moreover, di↵erently from
many conventional protocols and standard data sources (e.g., netflows, web

3

servers or intrusion detectors), there is not yet a mature threat model or56

a default catalogue of rules for monitoring the logs of transportation and
telco systems. These problems bear the risk of underutilizing logs emitted
by real-life systems: in fact, although logs are a goldmine of information,
their analysis is still a great challenge. Given the volume of logs, manu-60

ally inspection is hard and impractical. Anomaly detection techniques can
be conveniently used on the top of system logs to overcome the limitations
posed by the need for pre-established rules.

We propose deep autoencoding of system logs (AutoLog) to mitigate64

the issues above. AutoLog consists in sampling the logs of the system under
assessment at regular intervals, and to compute numeric scores by means of a
term-weighting technique without making any specific assumption on the
format of underlying logs. Scores collected solely under normative operations68

are used to train a semi-supervised deep autoencoder, which serves as a
baseline model to classify future scores into normative or anomaly classes. It
should be noted that semi-supervised learning does not need to know anoma-
lies at training time: in this respect, detection is pursued by pinpointing the72

scores that deviate –through the notion of reconstruction error of the
autoencoder– from the baseline model. This leads to a more general solution
to log-based anomaly detection. AutoLog is suited to distributed systems
because it is inherently conceived to aggregate scores computed with the log76

lines gathered from di↵erent sources (e.g., log files) at a given time. It is
worth noting that current distributed systems may create distinct log files
per application or node. In this respect, clock synchronization across the
nodes of the system is a requisite to time-stamp and to process the logs80

correctly. It is well-accepted that a synchronization protocol, such as the
Network Time Protocol (NTP), provides accuracies generally in the range of
0.1 ms with fast local area networks (LANs) and computers and up to a few
tens of milliseconds in the intercontinental Internet5: this delay is negligible84

when compared to the sampling period of AutoLog, which is in the range
ten to hundreds seconds. AutoLog requires no a-priori catalogues or rules of
interesting symptoms or patterns. Overall, the approach makes it possible
to cope with the lack of threat models for handling proprietary logs and to88

complement insights from hard-coded detection rules.
AutoLog is evaluated by means of direct experiments with the logs of

5
https://www.eecis.udel.edu/~mills/ntp.html

4

above-mentioned systems, where we compute and analyze numeric scores re-
flecting normative operations and anomalies. Experiments are based on a92

mixture of simulated and spontaneous anomalies. In the industrial and mi-
croservices systems we reproduce bruteforce authentication attempts, tam-
pering with data structures and system misuse –inspired by accepted tax-
onomies in the area– and collect the logs; on the other hand, the BG/L log96

accounts for hardware and software errors observed over 215 days of opera-
tions that were neither induced nor simulated. The Hadoop dataset accounts
for di↵erent types of service failures in the production environment. Results
indicate that the recall of AutoLog at detecting anomalies ranges between100

0.96 (industrial system) and 0.99 (microservices system); precision ranges
between 0.93 (BG/L) and 0.98 (microservices system). As for BG/L, whose
reference dataset is a widely-used benchmark in log analysis and anomaly de-
tection, AutoLog achieves recall, precision and F1 score of 0.98, 0.93 and 0.95:104

these figures are strongly competitive with other existing methods assessed
on the same BG/L dataset. The assessment of AutoLog is complemented by
extensive discussion on the use of Principal Component Analysis (PCA) and
clustering in our domain; moreover, we compare AutoLog with a wide set108

of techniques including isolation forest, one-class Support Vector Machine
(SVM), decision trees, vanilla autoencoder and variational autoencoder.

The paper is organized as follows. Section 2 presents related work in the
area. Section 3 describes the reference systems, our approach to compute112

scores from logs and available datasets. Section 4 addresses deep autoencod-
ing for anomaly detection, design and training aspects. Section 5 reports the
assessment of AutoLog. Section 6 proposes a comparative study of AutoLog
with respect to other techniques. Section 7 discusses limitations and threats116

to validity of our study, and how they have been mitigated, while Section 8
concludes the work and provides future research perspectives.

2. Related Work

2.1. Mining Quantitative Metrics from Logs120

Mining and analyzing quantitative metrics and scores inferred from
system logs and other monitoring tools has been proven to be successful
for addressing dependability and security problems in a variety of domains.
A literature review on the analysis of logs for vulnerability and security is124

presented in (Svacina et al., 2020).

5

The paper (Farshchi et al., 2018) address sporadic Cloud operations. The
technique correlates logs and Cloud metrics to detect anomalies during oper-
ations. Lines in the logs are clustered into higher-level activities through the128

Pearson product-moment correlation coe�cient method. A regression-based
technique is used to infer a correlation between lines in the log and changes
in Cloud metrics. Correlations are used to formulate assertions, which aim
to detect deviations of the system behavior.132

Natural language processing (NLP) techniques have been used to address
system logs. An anomaly detection technique leveraging NLP is proposed
in (Bertero et al., 2017); the approach is intended for analyzing logs from
a software system in face of di↵erent operating conditions. The analysis is136

performed through the Google word2vec algorithm, which allows mapping
words into a high dimensional space. Based on the mapping, vectors of
features are created to train a classifier and to provide information on the
target operating condition of the system.140

More recent contributions in this field attempt to obtain better repre-
sentations than word2vec by capturing semantic information hidden in log
templates. The LogAnomaly framework (Meng et al., 2019) leverages a
novel word representation method based on synonyms and antonyms, tem-144

plate2Vec, to e↵ectively represent the words in templates. The LogBERT
framework for log anomaly detection (Guo et al., 2021) is instead based on
Bidirectional Encoder Representations from Transformers (BERT). BERT is
a Google-developed Transformer-based machine learning technique for NLP148

pre-training. By using the structure of BERT, LogBERT expects that the
contextual embedding of each log entry can capture the information of whole
log sequences.

An approach for mining console logs to detect run-time problems in large-152

scale systems is presented in (Xu et al., 2008). The approach extracts struc-
tured information from console logs and constructs vectors of features.

The Authors of reference (Campos et al., 2018) present a study on the
use of machine learning for failure prediction. The study uses datasets of156

failure and non-failure data, which consist of numeric features representing
the system behavior.

A log-based abnormal task detection approach for Apache Spark is pre-
sented in (Lu et al., 2017). The approach leverages a set of features extracted160

from the logs of Spark, e.g., execution time and data locality of each task, to
detect where and when abnormalities occur.

The work (Zoppi et al., 2016) presents an anomaly detection approach

6

for Service-Oriented Architectures (SOAs), which aims to cope with SOAs’164

dynamics by collecting metrics at di↵erent system layers.
The technique proposed in (Oprea et al., 2015) aims to detect early-stage

infections targeting enterprise networks. The technique leverages network
logs, such as Domain Name System (DNS) and web proxy logs, and com-168

putes scores for domains contacted by known compromised hosts. A graph-
theoretic approach –namely belief propagation– is used to identify domains
that are indicative of malware infections.

2.2. Deep Autoencoding for Anomaly Detection172

The model that we use in AutoLog to capture a normative baseline is
based on deep autoencoding. This was first used for anomaly detection in
(Hawkins et al., 2002), becoming progressively more and more popular in re-
cent years. Since then, several studies have applied autoencoders for anomaly176

detection. For example, in (Sakurada and Yairi, 2014) autoencoders, denois-
ing autoencoders, PCA, and kernel PCA methods are compared according
to their performance. The use of deep learning models for anomaly detection
is surveyed in (Ru↵ et al., 2020; Pang et al., 2021).180

With respect to security applications, autoencoders typically underlie
hybrid designs of anomaly detectors. In (Fahimeh and Heikkonen, 2018)
the Authors leverage a deep autoencoder to create an anomaly-based intru-
sion detection system (IDS), and evaluate its performance by means of the184

KDD-CUP’99 dataset. In particular, their model is based on a stacked au-
toencoder, and uses in the training phase a greedy unsupervised layer-wise
training mechanism (Hinton et al., 2006).

The work (Shone et al., 2018) proposes an intrusion detection model that188

is a combination of deep and shallow learning. In particular, it uses a non-
symmetric deep autoencoder (NDAE) for unsupervised feature learning, and
a classification model based on stacked NDAEs and the Random Forest al-
gorithm. The performance of this solution is evaluated on the KDD-CUP’99192

and NSL-KDD datasets. In (Catillo et al., 2020) the Authors describe a semi-
supervised learning technique that provides two di↵erent training phases.
They test the approach on CICIDS2017 dataset by exploiting the double
loop learning concept with the aim of reducing the number of false positives.196

Authors in (Nguyen et al., 2019) propose a framework for detecting and
explaining anomalies in network tra�c. They leverage a variational autoen-
coder in order to detect anomalies. They demonstrate the validity of the

7

proposal on the recent University of Granada (UGR) dataset (Maci-Fernndez200

et al., 2018). The method is e↵ective for detecting a variety of attacks.
An autoencoder-based approach is proposed by the Authors of (Aygun

and Yavuz, 2017). In particular, they describe two deep learning-based
anomaly detection models using an autoencoder and a denoising autoencoder204

to detect zero-day attacks.
In the context of industrial anomaly detection, it is worth mentioning the

Autoencoder-based Payload Anomaly Detection (APAD) method (Kim et al.,
2020). Its Authors propose two payload anomaly detection approaches by208

leveraging an autoencoder: they are required at operative level and product
process management level, respectively.

In (Liu et al., 2021), instead, a semi-supervised anomaly detection method
is proposed, based on the encoder-decoder-encoder paradigm. The Authors212

show the e↵ectiveness of their proposal by means of an extensive experimen-
tation conducted on their Aluminum Profile Surface Defect (APSD) dataset.
Deep SAD (Ru↵ et al., 2020) is a deep methodology for semi-supervised
anomaly detection. Its Authors propose the use, in addition to the labeled216

normal samples commonly exploited by semi-supervised approaches, of a
small set of labeled anomalies to obtain performance improvements.

The work (Su et al., 2019) proposes a stochastic recurrent neural network
approach for multivariate time series anomaly detection. It captures tempo-220

ral dependence between multivariate observations and applies a variational
algorithm for representation learning. The approach aims to reconstruct
input data by the representations and use the reconstruction probabilities
to determine anomalies. Di↵erent from our work, experiments are done on224

numeric datasets and detection achieves an overall F1 score of 0.86.
It is worth noting that autoencoders are also used in domains other than

anomaly detection. For example, paper (Zhao et al., 2021) proposes a con-
ditional variational autoencoder to solve a highly imbalanced classification228

problem, where the training data points of the minority classes are rare. In
(Zhang et al., 2021) the Authors attempt to solve the generalized feature
selection problem. Also in this case they use an autoencoder to reduce the
dimensions of data while maintaining a high-quality representation as well.232

2.3. Our Contribution

While deep autoencoding methods are increasingly used for anomaly and
intrusion detection in well-structured network tra�c records –as for many
of the papers referenced in Section 2.2– we take a di↵erent perspective by236

8

addressing text lines of system logs. The analysis of system logs to detect
anomalies by “traditional” methods (i.e., not based on deep learning) is pre-
sented in (He et al., 2016b); the paper also includes the evaluation of six
anomaly detection methods (three supervised and three unsupervised) on240

publicly-available datasets. Log anomaly detection based on deep learning is
instead surveyed in (Yadav et al., 2020).

Recent trends in the intersection of deep learning and log analysis put
forth the use of Long Short-Term Memory (LSTM) approaches. The work244

(Yang et al., 2019) proposes nLSALog, an anomaly detection framework that
leverages log files as data source. The framework models the log as a natu-
ral language sequence and uses LSTM –built on the top of nominal training
data– to detect security anomalies. The Authors of (Yuan et al., 2020) pro-248

pose Adaptive Deep Log Anomaly Detection (ADA), which aims to detect
security-related anomalies in system logs, leveraging deep neural networks
with LSTM and dynamic adaptive thresholds. The approach in (Du et al.,
2017b), named DeepLog, uses a deep neural network to model a system log252

as a natural language sequence. DeepLog learns patterns from normative
executions in order to detect anomalies. Similarly, the Authors of (Zhang
et al., 2016) parse streamed console logs to detect early warning signals for
IT system failure prediction by means of log pattern extraction.256

The studies mentioned above capitalize on LSTM, which does allow to
capture dependencies over sequences of lines in a given log file, but at the
cost of complex and error-prone data preparation and clustering of similar
lines of the logs into common templates (or patterns). VeLog –close to our260

work– is an anomaly detection method based on variational autoencoders
(Qian et al., 2020). VeLog needs to generate the order and number of log
execution matrices: a new log sequence is labeled as an anomaly if the order
of log execution and number of log execution are predicted to be abnormal.264

As LSTM-based approaches, VeLog strongly depends on sequences of lines.
Two autoencoders along with Isolation Forest are used for unsupervised

anomaly detection in logs in (Farzad and Gulliver, 2020). The same Au-
thors propose in (Farzad and Gulliver, 2021) the extraction of features from268

log messages using an autoencoder, successively exploiting an LSTM, Bidi-
rectional Long-Short Term Memory (BLSTM) or a Gated Recurrent Unit
(GRU) to classify the extracted features. The paper (Wadekar et al., 2019)
presents a solution utilizing a hybrid Convolutional Autoencoder-Variational272

Autoencoder (CAE-VAE) architecture. Keys derived from individual entries
of log files are grouped in discrete event sequences, and a likelihood metric

9

is used as an anomaly score.
Di↵erently from the majority of papers cited above, AutoLog does not276

depend on the notion of sequence of lines in the logs. We address hetero-
geneous –and potentially distributed– logs by extracting vectors of numeric
scores, which make it possible to apply a wide category of classifiers and deep
learning models. While doing so, AutoLog embeds no application knowledge280

and makes no assumptions on the format and sequences of underlying lines
in the logs. As for the computation of the metrics, di↵erently from (Farshchi
et al., 2018) and (Xu et al., 2008), our proposal does not require supplemen-
tary data sources or the availability of the source code of the applications in284

hand; with respect to (Bertero et al., 2017) and (Oprea et al., 2015), we do
not target a specific type of operation. Accordingly, AutoLog can be applied
and ported across di↵erent systems, as we did in our study.

3. Systems and Log Analysis Approach288

In the following, we describe the reference systems, our log analysis ap-
proach to compute quantitative scores from logs and available datasets of
scores –from normative operations and anomalous conditions– used to con-
duct the experiments.292

3.1. Reference Systems

Our study leverages four systems, which range from a proprietary in-
formation system in the transportation domain by a top industry vendor6,
to a microservices-based installation, up to publicly-available system296

logs –common benchmarks in the literature– from a Blue Gene/L (BG/L)
supercomputer and a Hadoop cluster. A brief description of the systems
is provided below:

Industrial system. It consists of seven nodes within a local area300

network (LAN). The nodes host a variety of applications that handle
transportation-related data, such as current vehicle positions and ex-
pected routes, and implement several critical functions, which include
vehicle monitoring, route computation, trajectory tracing, alerting and304

human-machine interfaces ; each node hosts one or more applications.

6The name of the vendor is not disclosed due to confidentiality reasons.

10

Noteworthy, the system is operated with vendor-provided client appli-
cations, which serve as workload generator. The workload generated
by the clients consists of a mixture of service requests that mimic rep-308

resentative usage profiles of the system in production.

Microservices system. The system consists of a Clearwater7 mi-
croservices installation, which implements the standard IP Multimedia
Subsystem (IMS) architecture being adopted by large telcos for IP-312

based voice, video and messaging services. Microservices are connected
through a LAN environment and each characterized by a unique IP ad-
dress. An “anchor” microservice –named bono in Clearwater– serves as
interface to external clients; other key functions include a Session Initi-316

ation Protocol (SIP) router, a database of profile data and a RESTful
server that allows authentication credentials and users profiles to be re-
trieved. As the previous system, Clearwater is exercised with represen-
tative usage scenarios and workloads8, such as registering and deleting320

accounts, sending SIP messages and creating endpoints.

Supercomputing system. We use publicly-available system log data9

of a BG/L supercomputer from the Lawrence Livermore National Labs
(LLNL) consisting of 131072 processors, whose reference dataset (Oliner324

and Stearley, 2007) has become a consolidated benchmark in the area
of log analysis and anomaly detection. Interested readers are referred
to (Adiga et al., 2002) for an overview of the BG/L supercomputer.

Hadoop system. We use publicly-available logs10 generated by a328

Hadoop cluster with 46 cores running distributed applications backed
by the Hadoop Distributed File System (HDFS). Hadoop is a Big Data
framework that allows for the distributed processing of large data sets;
it is widely used and studied in the literature given its relevant use by332

industry. Interested readers are referred to the reference website11 for
any additional information.

7
http://www.projectclearwater.org/

8
https://github.com/metaswitch/clearwater-live-test/

9
https://www.usenix.org/cfdr-data

10
https://github.com/logpai/loghub/tree/master/Hadoop

11
http://hadoop.apache.org/

11

Table 1: Examples of log lines from the reference systems.

log line system

21 00:08:36.558 [Thread-024] Time: FunctionName: Warning: No industrial

database connection found for key ’01234’

[05/21/16 00:07:11.902] Message: received=0x20 datasize=256 dataid=4 industrial

May 21 00:09:39 NODE1 ntpd[11080]: synchronized to 192.168.56.101 industrial (syslog)

stratum 2

6-11-2018 14:18:32.644 UTC Error bono.cpp:1337: Route header flow microservices

identifier failed to correlate

2005-06-03-15.42.50.363779 R02-M1-N0-C:J12-U11 RAS KERNEL INFO BG/L

instruction cache parity error corrected

2015-10-17 15:37:57,902 INFO [main] org.apache.hadoop.mapreduce.v2.job- Hadoop

history.JobHistoryUtils: Default file system [hdfs://msra-sa-41:9000]

System logs collected in distributed deployments –such as those consid-
ered in our study– typically result from the “intertwinement” of heteroge-336

neous lines recorded by a variety of daemons, applications and nodes over the
time. Log lines reporting the events may be either centralized at a unique
location, as for BG/L, or sparse across di↵erent files. For example, our study
leverages 16 log files from the industrial system and 13 log files from the340

microservices system; similarly, the Hadoop dataset consists of several log
files populated by the system during a given timeframe. Overall, the logs
addressed by our study encompass a mixture of formats that consist of a
small number of standard fields (e.g., time-stamp, hostname, severity) and344

–mostly– unstructured text messages.
Table 1 provides examples of real log lines from the reference systems.

In the industrial system we leverage both logs in vendor-dependent formats
and operating system logs –typically available at /var/log/syslog in Linux-348

based systems– according to the widely-used syslog protocol12. It is worth
noting that the first two lines in Table 1 –although from the same vendor– re-
veal di↵erent formats, such as the time-stamp, lack of thread id in the second
line and a di↵erent syntax for representing key-value pairs. The microservices352

system and BG/L rely on their own log formats as well. For example, BG/L
is based on an e↵ective reliability, availability and serviceability (RAS) log-

12
https://tools.ietf.org/html/rfc5424

12

ging framework via a centralized DB2 database (Oliner and Stearley, 2007);
lines in the log are accompanied by various flags, such as originating loca-356

tion (e.g., rack and node) and severity (e.g., INFO, ERROR and FATAL). On
the other hand, Hadoop uses log4j13 to handle the logs, which introduces a
further log format in the context of our analysis. The inherent heterogeneity
of purposes and formats of logs that can be encountered in real-life systems360

is a challenge to practitioners. In this study we propose a uniform analysis
and detection approach than can be ported across di↵erent types of logs.

3.2. Overview and Log Analysis Approach

3.2.1. Overview of AutoLog364

AutoLog consists in sampling system logs with period P and then follow-
ing up with two pipelined steps: (i) computation of numeric scores from the
log lines, which can be handled more conveniently for machine learning than
the original raw text shown in Table 1, and (ii) anomaly detection based on368

the scores. Figure 2 shows the overall architecture of AutoLog, where the
steps mentioned above are named scoring and anomaly detection, respec-
tively. The approach relies on a database –shown in Figure 2– of normative
chunks, i.e., log lines windows of duration P , obtained during normative372

system operations. The database is meant to be populated before using Au-
toLog; moreover, numeric scores computed from the normative chunks in
the database are used to train the anomaly detector, i.e., training phase in
Figure 2. It is worth noting that log analysis is a “moving” target: software376

upgrades or changes to the configurations may alter meaning and character
of the logs during the lifetime of a given system (Oliner and Stearley, 2007).
While the implementation of a re-training component is not within the per-
spectives of the paper at this time, the architecture presented in Figure 2380

is suited to keep up with changes in the logs. When needed, the support
database of AutoLog can be augmented or updated by operations engineers
with new batches of normative chunks; in turn, the anomaly detector is re-
trained with the scores computed from the newly-added chunks. Updating384

the database has no specific impact on the overall functioning of our method
if not the time taken to insert the new chunks and training the detector. The
description of the scoring component is addressed in Section 3.2.2, while the
anomaly detection approach is detailed in Section 4.388

13
https://logging.apache.org/log4j/

13

Figure 2: Overview of AutoLog.

3.2.2. Scoring Component
Let LEi (with 1iN) denote a Logging Entity (LE), i.e., a component of

the target system (such as a daemon, an application, a node or a set of nodes)
that emits lines in the logs. A system may “natively” store the lines emitted392

by the entities into distinct log files, e.g., one file per application, microservice
or container; alternatively, lines from all the entities are centralized at a
unique location, and can be dissected later on by source, such as in BG/L.
Regardless how files are physically organized and stored, each LE produces396

its own timeline of log lines, which are denoted by " in Figure 2. The scoring
component acquires the log lines emitted by the LEs in the form of batches
of fixed-length windows –named chunks– of period P . It is worth noting that
the approach we use for handling logs is in-line with the well-consolidated400

micro-batch stream processing pattern adopted by up-to-date massive data
processing frameworks, such as Spark streaming14. At a given time, the
scoring component processes the chunks belonging to the same sampling
period, i.e., current chunks in Figure 2; once processed, current chunks are404

queued to the past chunks and scoring moves on to the next period.
Current chunks are fed to the scoring component represented in Figure 2,

which applies parsing and term weighting to the chunks in order to compute a
vector of numeric scores si (1iN), i.e., one per LEi; it is worth noting that408

14
https://spark.apache.org/streaming/

14

a new vector of scores is generated for every period P . Parsing is a common
data preparation step in log analysis (He et al., 2016a) and allows removing
the variable tokens of the log lines while preserving the constant parts. At
this stage, we also remove special characters and punctuation, such as #, ?,412

and %. On the other hand, term weighting has been successfully used in the
past to operate on text logs (Stearley and Oliner, 2008). Given a chunk after
parsing, term weighting is done by (i) tokening the log lines of the chunk
into terms15, (ii) counting the occurrences of the terms within the chunk,416

(iii) computing a numeric score for the chunk based on the occurrences of
the terms. Tokenization is applied to all the lines, including those pertaining
to negations in the log files.

Let xt denote the number of occurrences of the term t in the chunk of a420

given LEi (with 1tT, where T is the total number of terms). The score
of the chunk is given by:

s =

vuut
TX

t=1

(et · log2(1 + xt))2 (0 et 1) (1)

where et is the entropy of the term t. The entropy is computed from both
xt and by counting the occurrences of t in the set of (M-1) normative chunks424

of LEi stored in the support database presented in Section 3.2.1. Figure 3
exemplifies the role of the database at supporting the computation of the
entropy. For each LEi, the database contains (term, count) pairs computed
from (M-1) chunks collected under normative operations; noteworthy, (term,428

count) pairs are arranged by originating chunk, each represented by a dotted
box and labeled with 1, 2, ..., (M-1) in Figure 3. As previously mentioned,
the database is populated before the use of the approach. Once the scoring
component is fed with a new chunk –“current” chunk of LEi in Figure 3– it432

generates the (term, count) pairs and retrieves the counts of each term from
the database, such as for enable in Figure 3. That said, the value of the
entropy et is given by:

et = 1 +
1

log
2
(M)

MX

j=1

pt,j log2(pt,j) pt,j =
xt,jPM
j=1

xt,j

(2)

15A term is a sequence of characters separated by one (more) whitespace(s).

15

Figure 3: Role of the support database and term-count representation of the chunks used
for computing the entropy.

where M is the total number of chunks, i.e., (M-1) chunks from the database436

plus the chunk targeted by the scoring component (represented in the right-
most part of Figure 3), xt,j is the number of occurrences of the term t in the
chunk j, and pt,j is the fraction of term t’s total occurrences that are in the
chunk j (with 1jM). We assume that the chunk targeted by the scoring is440

the Mth chunk: accordingly, xt,M=xt in Equation 2. Beside the arrangement
into vectors for anomaly detection, each score produced by the scoring com-
ponent is tagged with (i) a unique numeric identifier, which tracks the vector
the score belongs, (ii) the originating logging entity, and (iii) time-stamps of444

first and last log lines in the chunk used to compute the score. Although not
intended for anomaly detection, administrators can leverage this accessory
data to traverse system logs upon the occurrence of an anomaly.

The database of normative chunks serves as a baseline of the system be-448

havior. In this respect, the score obtained by applying Equations 1 and 2
quantifies the extent an arbitrary chunk resembles (or not) the baseline of
terms that are emitted by the system under regular operations. The higher
the score, the larger the di↵erence between the terms of the chunk and “typi-452

cal” lines emitted by LEi, which may be seen as an indication of an anomaly.
For example, Table 2 shows some real chunks from BG/L and the correspond-
ing scores computed by our technique after parsing and term weighting. The
first chunk is assigned 0.23, i.e., a relatively low value, because it reports456

on detected and corrected errors, which are purely informative and can be
noted in the logs of BG/L almost at any time. On the other hand, the latest
two chunks point to real anomalies: they achieve a high score because the
log lines consist of terms that are infrequent across the logs. It is worth460

noting that the chunk shown by the bottom row of Table 2 results from the

16

Table 2: Examples of chunks and corresponding scores from BG/L .

log lines in the chunk score

1 ddr errors(s) detected and corrected on rank 0, symbol 18, bit 6 0.23

CE sym 18, at 0x0deb5a60, mask 0x02

total of 1 ddr error(s) detected and corrected

ddr: Unable to steer rank=0, symbol=5 - rank is already steering 3.68

symbol 4. Due to multiple symbols being over the correctable error threshold,

consider replacing the card1

machine check interrupt 6.76

instruction address: 0x001544bc

... omitted ...

rts panic! - stopping execution

interleaving of di↵erent anomalous lines, whose “aggregated” e↵ect is a score
higher than the individual lines themselves.

The weighting approach used here is also known as logarithmic entropy464

because –according to Equation 1– the dominance of the terms is mitigated
by log

2
and then scaled by the their entropy. The application of information

entropy as a measure for the uncertainty in a data set and detection purposes
is well consolidated (Holzinger et al., 2014). Moreover, there is an extensive468

body of literature on term weighting and related applications. Interested
readers are referred to introductory references, such as (Salton and Buckley,
1988; Quan et al., 2011), for additional information on the topic.

3.3. Available Datasets472

Vectors of scores are computed from the logs reflecting normative opera-
tions and anomalies of the systems presented in Section 3.1. In this respect,
experiments are based on both simulated and spontaneous anomalies.

3.3.1. System Logs476

Industrial and microservices systems. System logs from normative
(NORM) operations are obtained by exercising the systems with the client
applications presented in Section 3.1. In addition, we collect the logs from
five independent scenarios, each reproducing a di↵erent anomaly. The oc-480

currence of the anomaly is intertwined with the normative operations; after
its beginning, each anomaly stays on up to 30 minutes. We adopt a uniform

17

model of anomalies in the both the industrial and the microservices system;
anomalies are spiked in as follows:484

Authentication (AUTH): bruteforce attempts to gain unauthorized
access to a system. For both the systems in hand, authentication-
related anomalies are elicited by attempting to guess the credentials of
a legitimate user. This is achieved by means of remote logins via the488

frontend applications exposed by the systems to external clients (e.g.,
the human-machine interface of the industrial system).

Log deletion (DEL): deletion of the content of a log. It should be
noted that this is a typical action performed by an attacker to cover492

his/her traces.

Hang (HANG): the system becomes unresponsive and no service/out-
put is provided within an acceptable timeframe. For example, in the
case of the industrial system, the anomaly is injected by stopping the496

database service. As a result, the remaining applications of the sys-
tem stay up; however, they are not able to successfully fulfill the client
requests.

Modification (MOD): tampering with the data structures handled by500

the system through abnormal alterations of their fields. For the in-
dustrial system, modification is implemented by changing the expected
routes of the vehicles; similarly, in the microservices system we alter
the telephone account records.504

Denial of Service (DOS): abnormal usage of the system functions over
the nominal capacity with the aim of disrupting service. In both sys-
tems, this is achieved by increasing the number of client applications,
and thus frequency and volume of the service requests.508

Although reproduced, anomalies are inspired by the well-consolidated
attack phases reported in (Ruiu, 1999); moreover, they cover a mixture of
diverse scenarios that range from bruteforce authentication attempts to tam-
pering with OS resources and misuse of system functions.512

Supercomputing system. It is standard practice to log messages in a
supercomputing system, such as BG/L. Log lines in the BG/L log account
for hardware and software errors at all levels. Di↵erent from the systems

18

Figure 4: Tuple count of anomalous log lines in BG/L.

presented above, the BG/L log contains spontaneous –neither induced or516

simulated– anomalies observed over 215 days of operations at LLNL (Oliner
and Stearley, 2007).

Hadoop system. Hadoop logs used in this study are collected dur-
ing di↵erent executions of data processing applications distributed across a520

cluster of machines. Logs pertain to both normative executions of the appli-
cations and di↵erent types of service failures in the production environment,
such as machine down, network disconnection and disk full. The dataset is
publicly-available as a benchmark for log-based anomaly detection; details524

can be found in the proposing paper (Lin et al., 2016).

3.3.2. Sampling and labelling
System logs are sampled into chunks in order to compute the scores for

anomaly detection. We set a period P=10 s for the industrial, microservices528

and Hadoop system, which is a balanced trade-o↵ between the latency of
the detection and the need for ensuring a suitable number of lines per chunk
after each sampling round. As for BG/L, we conduct a sensitivity analysis
beforehand. This stems from the long-standing observation that anomalies532

tend to cause multiple and redundant log lines, which should be grouped
together. A common technique to address this issue is the tuple heuristic
(Hansen and Siewiorek, 1992), which groups the lines whose time distance is
lower than a threshold into the same “tuple”. The threshold is determined536

by testing di↵erent time values and counting the resulting number of tuples
(i.e., the tuple count). Figure 4 shows how the tuple count of the anomalous
log lines of BG/L varies with respect to the threshold. Experimental studies

19

Table 3: Number of unique n-grams, logging entities (LE), sampling period and chunks
by system.

system corpus statistics LE period number

unigrams bigrams trigrams of chunks

industrial 898029 2382190 7235966 16 10 s 22640

microservices 2370889 5129706 8689044 13 10 s 12116

BG/L 5632912 12207650 21771832 67 300 s 3473548

Hadoop 152068 328295 541476 28 10 s 114884

demonstrate that a good choice for the threshold is the value right after the540

“knee” of the curve –dotted line in Figure 4– where the tuple count flat-
tens sharply (Hansen and Siewiorek, 1992). Based on the result, we assume
P=300 s for BG/L.

Table 3 shows the number of unique unigrams, bigrams and trigrams (thus544

providing a glimpse of each log corpus), logging entities, sampling period
and chunks by system. For the industrial, microservices and Hadoop system,
logging entities relate to distinct log files; as for BG/L, entities consist of
the set of nodes allotted to the same rack. As a remark, AutoLog produces548

one score per chunk : in consequence, –given a dataset– the number of scores
is equal to the number of chunks shown by the rightmost column of Table
3. The number of chunks is determined by the number of logging entities,
sampling period and duration of the logs in hand.552

Figure 5 shows the scores of two logging entities, i.e., LE3 for the in-
dustrial system (Figure 5a) and LE6 for the microservices system (Figure
5b), under normative operations and the occurrence of an anomaly over 30
subsequent chunks (i.e., five minutes). It can be noted that the anomalies,556

i.e., MOD and DOS (4-marked series), make the score to considerably de-
viate from the normative ones (�-marked series). It is worth noting that
normative scores are computed from the logs elicited through representative
client applications and benchmarks, which generate mixtures of interleaving560

requests. In this respect, the normative scores reflect the variability of the
workload at the time logs were collected. Most notably, the y-axis of Figure
5 is in log scale: while it allows appreciating fluctuations around low values
of the scores, their variability is over-emphasized.564

Scores are arranged into vectors according to the approach in Section
3.2.2. Furthermore, we accompany each vector by a label, which denotes
whether the vector relates to normative or anomalous conditions. For the

20

(a) Industrial system (LE3). (b) Microservices system (LE6).

Figure 5: Scores of two logging entities within normative and anomalous conditions.

industrial and microservices systems the label is either NORM (normal)568

or any of AUTH, DEL, HANG, MOD, DOS. As for BG/L and Hadoop, it
must be noted that the public logs used in our study are labeled. In fact,
logs were tagged with a label established by domain experts in consultation
with the system administrators: we rely on this information to label the572

vectors produced by our approach, i.e., NORM or ANOM (anomaly). Whilst
AutoLog does not need the labels at training time, labels are intended to be
used for evaluating the e↵ectiveness of both AutoLog and other techniques
assessed in the comparative study.576

4. Anomaly Detection Method

4.1. Background

AutoLog hinges on the use of a deep autoencoder. An autoncoder
(AE) is a feedforward neural network where the output layer has the same580

dimension of the input layer. In fact, the purpose of an AE is to “reconstruct”
the input at the output layer. It is possible to design di↵erent types of
autoencoders (Goodfellow et al., 2016). In particular, deep learning can be
applied to autoencoders: multiple hidden layers are used to provide depth.584

The resulting network is known as deep or stacked autoencoder (Vincent
et al., 2010).

An autoencoder learns the input representation in a di↵erent feature space
(Goodfellow et al., 2016). The learning task forces the autoencoder to catch588

the most relevant features of the training data at the bottleneck layer,
i.e., the middle hidden layer, so that the input can be reconstructed at the
output layer. Therefore, the AE consists of two parts: encoder and decoder.

21

The encoder learns an e�cient representation of the given input by using592

its hidden layer(s); the decoder, instead, produces the reconstruction of the
input by using the encoded information in its hidden layer(s). Therefore, the
decoder mirrors the encoders in the number of hidden layers and neurons.

An encoder is a deterministic map f✓ that transforms an input vector596

s into its representation y, where ✓ = {W, b}, W is the weight matrix and
b is the bias vector. On the other hand, a decoder is the g✓ function that
maps backwards the representation y to the output z, i.e., the reconstruction
of the input vector s. In Equation 3 the variables W and b represent the600

weight and bias values for the encoding phase. Similarly, in Equation 4 the
variables W 0 and b0 are the weight and the bias for the decoding phase.

f✓(Ws+ b) = y (3)

g✓(W
0y + b0) = z (4)

The reconstruction error (RE) measures the di↵erence between the
reconstructed, i.e., z, and the original version of the input, i.e., s. It is604

important to feed data to an autoencoder and tune it until it is well trained
to reconstruct the input with minimum error. Therefore, the measure of
faithful reproduction of input data is defined by the RE, which is computed
as follows:608

RE =
1

N

NX

i=1

(zi � si)
2 (5)

where zi and si (with 1iN) denote the components of the output and input
vector, and N is the number of components. Overall, the key characteristics
of autoencoders are:

Data dependency. Autoencoders will only be able to reconstruct data612

similar to that on which they have been trained. This principle is the
basis of our anomaly detection approach (more on this later).

Output lossy. This means that the reconstructed output will be de-
graded compared to the original input.616

Self-contained learning. Autoencoders are trained automatically from
data examples. It is not necessary to do the extra work of preparing
extra labels or data.

22

Figure 6: Anomaly detection in AutoLog.

An autoencoder can be used for dimensionality reduction, in a way similar620

to Principal Component Analysis (PCA) (Almotiri et al., 2017). It is worth
noting that PCA uses linear algebra to make the transformation of the coor-
dinates; in contrast, an autoencoder performs non-linear transformations by
means of non-linear activation functions and multiple layers. Hence the use624

of an autoencoder is particularly attractive when the data points are complex
and non-linear in nature (Song et al., 2013). This is the case of the datasets
in hand, as it will be shown in Section 5.1.

4.2. Use of the Deep Autoencoding in AutoLog628

Figure 6 shows a representation of the AE in the context of AutoLog
and it reproduces input and output of the anomaly detection block in Fig-
ure 2 (i.e., scores and detection outcome, respectively). More importantly,
Figure 6 details the internal organization of the anomaly detector. Scores632

–generated by the scoring component– are fed at the input layer of the AE:
scores pass through a number of hidden layers until the output layer returns
the reconstructed scores. Noteworthy, input and output layers have the same
dimension N . In the context of our study, the value of N is selected equal636

to the number of logging entities, i.e., components emitting lines in logs as
described above. The number of logging entities and their selection for each
system is presented in Section 3.3.2.

The rationale underlying the use of the AE in AutoLog is that RE can640

be used as an anomaly indicator as follows. If the AE is trained using only
vectors of normative scores –hence the notion of semi-supervised learn-
ing– it will provide (i) low RE (good reconstructed representation) for future

23

normative input vectors, and (ii) high RE (bad reconstructed representation)644

for future anomalous input vectors. In this respect, the AE serves as a nor-
mative baseline: when the AE attempts to reconstruct a data point that
is “outside” the norm –and thus a potential anomaly– it will experience an
increase of the RE because it was never trained to reproduce anomalies.648

As for many anomaly detection techniques, we apply a binary threshold
function to RE in order to pinpoint anomalies: the input vectors that pro-
duce RE values under the threshold are deemed normative and those with
REs above the threshold, anomalous. The threshold is called here anomaly652

threshold: as the specific configuration of the AE for the data in hand (e.g.,
in terms of layers, neurons and activation functions), the setup of a suitable
threshold is an outcome of the training phase and it is addressed in Section
4.4. RE computation and comparison with the threshold represent the steps656

of AutoLog that produce the final detection outcome, as shown in Figure 6.

4.3. Dataset partitioning

As discussed in Section 3.3, we conduct our experiments with datasets of
scores arranged into labeled vectors; labels indicate whether a given vector660

is collected from normative operations or under an anomaly. As for the
labels, we carry out a symbolic-numeric conversion by substituting 0 to the
labels corresponding to a normative vector and 1 to the labels corresponding
to anomalous vectors. Each dataset is split into three disjoint subsets664

through random sampling. It is worth noting that the sampling procedure
is without replacement : once selected from a set, the vector is not placed
back to the set it comes from. As said, a vector consists of chunk-wise
scores computed from the log lines emitted by the logging entities during668

a sampling round. Figure 7 shows how a given dataset is partitioned. Let
NV be the cardinality of the normative vectors and AV the cardinality of
the anomaly vectors. According to Figure 7, the first cut consists in (i)
separating normative from anomalous vectors, and (ii) splitting normative672

vectors into two disjoint subsets of cardinalities (0.8 · NV) and (0.2 · NV),
respectively. At the bottom of Figure 7, we find:

Training set. It contains only normative vectors: the cardinality of the
training set is 0.9 · (0.8 · NV) of randomly selected normative vectors676

from the originating dataset. The set is meant for training the AE.
Labels are removed.

24

Figure 7: Dataset partitioning

Validation set. Again, it contains only normative vectors and is used
for determining the detection threshold. In particular, the cardinality680

of the validation set is 0.1 · (0.8 ·NV). As with the training set, labels
are removed.

Test set. It contains both normative and anomalous vectors. The
cardinality of the test set is (0.2·NV)+AV , i.e., 20% normative vectors684

–obtained at the first cut– plus all the anomalous vectors. According
to the sampling procedure and the partitioning in Figure 7, normative
vectors of the test set are held out from training. Vectors in the test
set are accompanied by the corresponding labels in order to evaluate688

the correctness of the predictions.

After partitioning, we obtain three non-intersecting subsets. Table 4 pro-
vides the size of each dataset for the systems in hand, and the corresponding
breakdown into training, validation and test set. Given a system, the number692

of vectors is equal to the number of chunks divided by the number of logging
entities of that system. For example, the total chunks of the industrial sys-
tem (i.e., 22640) returns 22640

16
=1415 total vectors, where 16 is the number

25

Table 4: Training, validation and test set size.

system total breakdown

chunks/vectors training validation test

industrial 22640/1415 6928/433 768/48 14944/934

microservices 12116/932 6552/504 728/56 4836/372

BG/L 3473548/51844 2450525/36575 272288/4064 750735/11205

Hadoop 114884/4103 70756/2527 7868/281 36260/1295

Table 5: Layering structure of di↵erent AE configurations (all the layers are dense).

Configuration 1 Configuration 2 Configuration 3

layer activation layer activation layer activation

Input - Input - Input -
Hidden 1 ReLU Hidden 1 tanh Hidden 1 tanh
Hidden 2 tanh Hidden 2 sigmoid Hidden 2 tanh
Hidden 3 ReLU Hidden 3 sigmoid Hidden 3 tanh
Output ReLU Output tanh Hidden 4 ReLU

Hidden 5 sigmoid
Output ReLU

of logging entities shown in Table 3. A similar computation applies to all696

chunks/vectors pairs in Table 4.

4.4. AE Design, Training and Threshold Selection

The design of a deep neural network, such as the AE, is based on estab-700

lishing many hyperparameters that are subject to fine-tuning. As for any
machine learning study, the choice of the hyperparameters is guided by ex-
perimental tests carried out by analyzing the outcome of the model –RE in
our study– with respect to the validation set.704

There are two desirable properties of the RE, which make it possible to
usefully deploy an AE for anomaly detection in our context (i) RE⇡0 and (ii)
small dispersion. An AE design that meets these properties is summarized
by the Configuration 1 in Table 5, which is the selected configuration for708

the datasets in hand: its RE on the validation set of the industrial system
is shown in Figure 8a, where it can be noted that it is ⇡0 for all –if not
one– data points. In order to provide concrete examples of less e↵ective AE

26

(a) Configuration 1. (b) Configuration 2. (c) Configuration 3.

Figure 8: Analysis of RE on the validation set by configuration; Configuration 1 is the
final selection for AutoLog.

designs for the industrial system, Figure 8b and 8c show the REs achieved712

on the validation set by two di↵erent configurations that fail to obtain RE⇡0
(Configuration 2 and 3 in Table 5).

As summarized by Configuration 1 in Table 5, the chosen AE is made
up of five layers. These layers include N -128-64-128-N neurons, where N716

is the number of logging entities. Dropout layers are placed after the first
hidden layer and after the second hidden layer, in order to prevent overfitting.
The Rectified Linear Unit (ReLu) has been selected for the encode layer,
the decode layer and the output layer, while for the bottleneck layer, i.e.,720

Hidden 2, has been used the Hyperbolic Tangent (Tanh) activation function.
Moreover, to achieve the sparsity, activity regularizer terms L1 are applied on
each layer. We train the AE on training data points for 100 epochs using the
RMSProp optimizer with learning rate value lr=0.001. We also shu✏e the724

training data before each epoch. It is worth pointing out that the training
phase takes around 1 minute in the worst case (BG/L dataset). This time has
been obtained on a laptop computer without GPU acceleration, and so it can
be greatly reduced using more powerful or ad hoc hardware. In particular,728

the experiments are conducted on a MacBook Pro with an Intel Core i5 2.6
GHz processor and 8 GB of RAM.

We select the threshold value by using normative points, and hence the
training and validation procedure is semi-supervised. As no label is required,732

this is by far the simplest approach for threshold selection. In particular,
we adopt a percentile method and choose as anomaly threshold the 90th
percentile of the RE values obtained by the AE on the validation set. Section
5.3 validates the proposed threshold selection method by analyzing receiver736

27

operating characteristic curves. Selecting the 90th percentile appears suitable
for all the datasets we have considered so far. In practice, it aims to mitigate
the impact of sporadic RE outliers caused by accidental anomalies in the
normative logs. We are aware that selecting the 90th percentile is not a one-740

fits-all approach. For example, in those systems where anomalies are sparse
and with a high false positive rate, the detection approach might further
benefit from the adoption of a more sophisticated threshold selection, such
as the one recently proposed in (Carrington et al., 2021). Nevertheless, it744

should be noted that our choice is inline with many other studies in the area
that rely on easy-to-explain thresholds, such as (Aygun and Yavuz, 2017),
which adopts the mean value. Although worthy to be investigated, digging
into fine-grained threshold-related aspects is beyond the perspective of the748

study at this stage, where we focus on the overall methodology.
We implemented our architecture with Keras16 (Version 2.4.3) and Ten-

sorFlow17 (Version 2.4.1). Keras is a Python library that runs on top of Ten-
sorFlow; it provides highly modularized APIs for building and training deep752

learning models. The core code of AutoLog encompassing the implementa-
tion of the autoencoder has been made publicly-available through GitHub18.

5. Experimental Results

AutoLog is applied to the reference systems –industrial, microservices,756

BG/L and Hadoop– in order to quantify its e↵ectiveness to discriminate
normative operations from the occurrence of anomalies. In the following, we
present some reflections on the challenges of PCA and clustering and discuss
the results of AutoLog. A comparison study of AutoLog with a wide set of760

techniques is provided is Section 6.

5.1. Reflections on the Use of Clustering

We conduct an exploratory data analysis to check whether the scores
obtained in face of normative conditions and anomalies tend to cluster into764

di↵erent groups. To this aim, the vectors of the datasets can be conveniently
regarded as “points” of a Euclidean space. Nevertheless, the dimensionality
of the datasets, i.e., 16, 13, 67 and 28 –not including the label– for each

16
https://keras.io/

17
https://www.tensorflow.org/

18
https://github.com/ScalingLab/AutoLog

28

(a) Industrial. (b) Microservices.

(c) BG/L. (d) Hadoop.

Figure 9: Screeplots of the variance of the principal components.

system, respectively (with each dimension corresponding to the number of768

logging entities, as in Table 3) prevents from obtaining human-readable visu-
alizations for exploratory purposes. In consequence, a Principal Component
Analysis (PCA) is done beforehand.

PCA is a dimensionality reduction technique whose objective is to find772

the directions along which a set of high-dimensional points line up “best”.
Points are transformed in a new coordinate space where each axis catches
progressively less variance of the original data. This concept is summarized
by means of a screeplot, which is one of the byproducts of a PCA. Figure 9776

shows the screeplots obtained for the datasets in hand. The x-axis refers to
the principal components (PC) –each denoted by an integer– and the y-axis
is the variance explained by the PC; it should be noted that PCs are sorted
by descending variance. For the industrial system (Figure 9a) the variance780

of the top-3 PCs accounts for 189.2, 59.1 and 29.2, respectively, out of the
total variance of 304.9 (i.e., the sum across all PCs): as a consequence, the
top-3 PCs catch the 91.0% of the total variance. Similarly, the total variance
of the PCs for the microservices dataset is 29.1; the top-3 PCs account for784

29

(a) Normative vs anomaly data points
irrespective from the classes.

(b) Normative vs anomaly data points
broken down by classes.

Figure 10: Scatterplot of the dataset with respect to the top-3 principal components
(industrial system).

27.0, 0.52 and 0.39 variance, which sum up to 95.9% of the total. As for
BG/L and Hadoop in Figure 9c and 9d, we show the top-10 components due
to the large number of original dimensions: the top-3 PCs encompass 68%
and 80% of the total variance for BG/L and Hadoop, respectively. Based on788

these results, we narrow the visualization to a more suitable 3D Euclidean
space, where each point consists of the coordinates along the top-3 PCs.

Figure 10a shows the 3D scatterplot of the industrial system dataset,
where the axes are PC 1, PC 2 and PC 3, respectively. Moreover, �-marked792

points denote normative points and ⇤-marked points depict anomalies, i.e.,
any of the types presented in Section 3.3. It can be noted that the points
tend to group around two areas. Whilst at the bottom part of the grid we
find almost only anomalous points, the top left group is strongly cluttered: in796

fact, normative and anomalous points are intertwined. Figure 10b provides
a similar perspective where anomalies are broken down by class: again, �-
marked points denote normative points while the remaining mark types are
meant to represent anomalies. It can be noted that misuse-related anomalies,800

i.e., MOD (⇧ mark) and DOS (O mark), take a clear stand from normative
points; however, the real challenge for detection is the intertwinement of 4
di↵erent classes in the top left group, which undermines the practical us-

30

(a) Normative vs anomaly data points
irrespective from the classes.

(b) Normative vs anomaly data points
broken down by classes.

Figure 11: Scatterplot of the dataset with respect to the top-3 principal components
(microservices system).

(a) BG/L. (b) Hadoop.

Figure 12: Scatterplot of BG/L and Hadoop datasets with respect to the top-3 principal
components.

31

ability of PCA and clustering with respect to the data in hand. This finding804

holds for the micoservices dataset as well. Figure 11 shows the 3D scatterplot
of the top-3 PCs for the microservices dataset, i.e., binary view (Figure 11a)
and multiclass view (Figure 11b). Again, normative and anomalous points
are strongly intertwined.808

The scarce linear separability of the data points is a key challenge to the
use of PCA and clustering as reference technique for unsupervised learning.
While the industrial and microservices systems were available at a private
premise, BG/L and Hadoop are common benchmarks being used by other812

papers in the area of log analysis. Figure 12 indicates that the data points
of BG/L and Hadoop su↵er from the same intertwinement of normative and
anomaly classes. For example, it is worth noting that the paper (Meng et al.,
2019) attempts to apply PCA to BG/L with no success for anomaly detection.816

Our deep autoencoding approach capitalizes on non-linear transformations
of the data, which are much more suited to the datasets in hand and yield
to better results.

5.2. Evaluation of AutoLog820

We run the test set of the datasets in hand with AutoLog trained as
described in Section 4.4. Since the datasets are labeled, each RE produced
by AutoLog is accompanied by the label, which we use for evaluation; as
said, the AE saw no anomalies during training. Figure 13, 14, 15, and 16824

show the REs for the industrial system, the microservices system, BG/L, and
Hadoop, respectively. In particular, each data point is marked by either � or
O for better visualization of normative and anomalous points; moreover, we
superimpose vertical continue lines to delimit the data points by class, which828

are named according to the descriptions in Section 3.3.2. A semi-logarithmic
scale (x-axis in linear scale and y-axis in log scale) is used to better visualize
the RE values. The y-axis is the RE; the x-axis is the id of the points in the
test set. The horizontal dashed line in Figure 13, 14, 15 and 16 indicates the832

anomaly threshold, which is 0.00079, 0.00460, 0.00080, and 0.03937 for each
system, respectively. Section 5.3 investigates the validity of our threshold
selection approach.

We compute the metrics of recall (R), precision (P), and F1 score to836

evaluate AutoLog. Metrics are computed as:

R =
TP

TP + FN
P =

TP

TP + FP
F1 score = 2 · P ·R

P +R
(6)

32

Figure 13: AutoLog: RE of the test set for the industrial system.

Figure 14: AutoLog: RE of the test set for the microservices system.

where True Positive (TP) and True Negative (TN) represent the points that
are correctly predicted, while False Positives (FP) and False Negatives (FN)840

indicate misclassifications. For example, TP is the set of anomalies whose

33

Figure 15: AutoLog: RE of the test set for BG/L.

Figure 16: AutoLog: RE of the test set for Hadoop.

RE is higher that the threshold; similarly, TN is the set of normative points
whose RE is lower that the threshold. Table 6 provides the evaluation metrics
of Autolog for all the systems.844

34

Table 6: AutoLog: evaluation metrics.

system recall precision F1 score

industrial 0.96 0.98 0.97

microservices 0.99 0.97 0.98

BG/L 0.98 0.93 0.95

Hadoop 0.98 0.96 0.97

Results are notable, especially if we consider that AutoLog is based on a
semi-supervised approach, which means that it does not need for anomalies
at training time. According to Figure 13, 14, 15 and 16, we observe that
most of the anomalies have high RE and are well above the thresholds for848

all the systems. This outcome allows making some relevant considerations.
For example, unlike the results obtained by means of PCA, AUTH, DEL and
HANG anomalies of the industrial system are now easily identifiable: their
RE is much higher than the typical RE of normative data points. These852

anomalies were strongly intertwined with normative points in the scatterplots
of the dataset shown in Figure 10. A similar consideration can be done for
the microservices system. According to Figure 11, data points grouped in
two clusters –both composed by normative and anomalous points– in the856

Euclidean space: di↵erently, the points appear well-separable with AutoLog,
as in Figure 14. Furthermore, Figure 15 and 16 show that anomalies are
above the threshold also for BG/L and Hadoop.

The discussion in Section 4.4 (where we presented the selection of the860

hyperparameters of the autoencoder and how they a↵ect the RE) is sup-
plemented here by means of the assessment of anomaly detection perfor-
mance. As for Configuration 2 and 3 reported in Table 5 –strongly di↵erent
from AutoLog in terms of both activation functions (Configuration 2), and864

number of layers and activation functions (Configuration 3)– they achieve
R=0.89, P=0.97, F1 score=0.93 and R=0.20, P=0.85 and F1 score=0.32,
respectively. These detection figures are unsatisfactory when compared to
AutoLog reported in Table 6: both the configurations fail to render RE⇡0868

on the validation set –one of the key design principles of AutoLog– as shown
in Section 4.4.

We perform an additional analysis by assessing the sensitivity of the F1
score while narrowing, widening and deepening the AutoLog autoencoder.872

Results are summarized in Figure 17 for the industrial system dataset. As

35

(a) Fixed number of hidden layers
and decreasing/increasing number
of neurons.

(b) Increasing number of hidden
layers.

Figure 17: Sensitivity of the F1 score with respect to (wrt) the baseline AutoLog autoen-
coder (AE).

for Figure 17a, we test di↵erent autoencoders with 3 hidden layers. The
x-axis is the neuron ratio with respect to (wrt) the selected number of
neurons for AutoLog at the hidden layers, i.e., (128,64,128): given a value876

of x in Figure 17a, the number of neurons of the autoencoder under test
is given by (128,64,128)·x. For example, x=0.5 returns (64,32,64) neurons,
i.e., a “narrower” autoencoder compared to AutoLog; similarly, at x=1.5
we obtain (192,96,192), i.e., a “wider” autoencoder. It is worth noting that880

x=1.0 corresponds to AutoLog itself, whose F1 score for the industrial system
is represented by a dashed horizontal line. Figure 17a indicates that the F1
score achieved by the autoencoders flattens at x=1.0, i.e., the number of
neurons we selected for AutoLog; widening further the autoencoder does not884

improve over AutoLog. On the other hand, Figure 17b shows how the F1
score varies when we increase the number of hidden layers. As indicated by
the x-axis, analysis is done by step 2 because we inject two hidden layers –one
at the encoder and one at the decoder, according to Section 4– for each test;888

moreover, the number of neurons for the new layers is set between 64 and
128. Noteworthy, the leftmost data point, i.e., 3 hidden layers, corresponds to
AutoLog. Figure 17b indicates that, with respect to the problem addressed
and data in hand, deepening the autoencoder does not necessarily improve892

anomaly detection.

36

5.3. Validation of the Anomaly Threshold

Choosing the optimal anomaly threshold is a critical task, especially if
performed automatically (Liu et al., 2015). As explained in Section 4, our896

threshold selection is based only on the REs of normative data points in the
validation set; notwithstanding, the threshold is able to discriminate fairly
well normative from anomalous points. In order to validate our threshold se-
lection method, we compare it with the “best-fit” threshold selection that can900

be done on the test sets when considering both the RE and the ground truth,
i.e., the knowledge of the class of the points to be classified. The availability
of the ground truth is the typical assumption of supervised techniques.

We analyze the Receiver Operating Characteristic (ROC) curve for our904

model. It can be considered as a diagnostic plot, which evaluates the e↵ec-
tiveness of the classification at various threshold settings. The ROC curve
shows how much the model is capable of distinguishing between classes at
di↵erent operating points. The area under the ROC curve (AUC) provides908

a numeric score to summarize the performance of a model with a value be-
tween 0.5 (no-skill) and 1.0 (perfect skill). The higher the AUC value, the
better the model at predicting the classes. The ROC curve is plotted with
True Positive Rate (y-axis) against the False Positive Rate (x-axis). A912

diagonal line on the plot from the bottom-left to top-right indicates the curve
for a no-skill model, and a point in the top left area of the plot indicates a
model with perfect skill. The performance of each classifier is represented by
a point of the ROC curve and, as the threshold changes, the location of the916

point changes. The point that allows the best performance is in the top left
area of the plot. From the analysis of the ROC curves corresponding to our
model for the datasets in hand (Figure 18) it is possible to note a number of
points –and therefore potential thresholds– in the top-left area of the plots.920

Our goal is to locate the threshold with the optimal balance between
false positive and true positive rates. There are several techniques that allow
to achieve this goal (Du et al., 2017a). In particular, for our analysis we
have selected the Geometric Mean or G-Mean score. It is a metric that924

tries to find a balance between the Sensitivity and the Specificity, and
computed as follows:

G-Mean = sqrt(Sensitivity · Specificity) (7)

where:
Sensitivity = TruePositiveRate (8)

37

(a) Industrial system. (b) Microservices system.

(c) BG/L. (d) Hadoop.

Figure 18: AutoLog: ROC curves

928

Specificity = (1� FalsePositiveRate) (9)

The approach we have pursued is to assess all the thresholds obtained
from the ROC analysis and select the one with the highest G-Mean score.
The ROC curves in Figure 18a, 18b, 18c and 18d highlight the optimal points
(-marked points in the top left area of the plots). For a direct evaluation932

we report in Table 7 the thresholds produced by the proposed percentile
selection method and the best-fit thresholds obtained with the ROC curve
method for all the datasets. It is worth noting that the threshold values
obtained with the two methods are very close. The two approaches lead to936

very similar results, and so that our choice –semi-supervised and based on a
much simpler procedure– is perfectly reasonable.

38

Table 7: Anomaly threshold values.

system percentile method ROC curve method

(AutoLog) (supervised scenario)

industrial 0.00079 0.00086

microservices 0.00460 0.00564

BG/L 0.00080 0.00100

Hadoop 0.03937 0.04821

6. Comparative Study

In this section we compare AutoLog with the following techniques: iso-940

lation forest, one-class SVM, decision tree, vanilla autoencoder and
variational autoencoder. These techniques are widely used in di↵erent re-
search fields for detecting anomalies from data and are applied to the datasets
in hand. We implement the isolation forest and one-class classifier by means944

of scikit-learn19. The decision tree is implemented with WEKA20; both
the vanilla and variational autoencoder are based on Keras. Given a dataset,
for all the techniques, if not the decision tree, we use the same training and
test conditions of AutoLog: (i) 80% normative vectors –random selection948

without replacement from the originating dataset– for training and, (ii) re-
maining 20% normative vectors plus all the anomaly vectors for testing and
computing the evaluation metrics. As for the decision tree, we use both
normative and anomalous vectors for training and testing, as described in952

Section 6.3. In the following sections we briefly introduce each technique
and then present recall, precision and F1 score achieved for each system.

6.1. Isolation Forest

Isolation forest (or iForest) is an anomaly detection technique based on956

the assumption that anomalous data points are rare and far from the centers
of normal clusters (Liu et al., 2008). Many anomaly detection techniques rely
on the construction of normal profiles by defining how “normal” points look
like: in consequence, anomalies are those points that do not conform to the960

defined “normal” profile. Di↵erent from this general approach, an isolation
forest aims to directly target anomalies.

19
https://scikit-learn.org/stable/

20
https://www.cs.waikato.ac.nz/ml/weka/

39

Table 8: Isolation forest: evaluation metrics.

system recall precision F1 score

industrial 0.53 0.87 0.66

microservices 0.85 0.87 0.86

BG/L 0.64 0.78 0.70

Hadoop 0.53 0.71 0.61

The isolation forest technique generates partitions on a given dataset by
randomly selecting a feature from the given set and a split value between the964

minimum and maximum values of the selected feature. Anomalous points are
likely to require fewer partitions to be isolated compared to the so defined
“normal” data points in the dataset. Partitioning is represented by a tree
structure: anomalies will be the points with a shorter path length within968

the tree, i.e., number of partitions required to isolate the points. As with
other anomaly detection methods, also in the case of isolation forest is defined
an anomaly score:

s(x, n) = 2�
E(h(x))

c(n) (10)

let x the point and n the number of external nodes (with no child), h(x) is the972

path length of the point x and c(n) is the average path length of unsuccessful
search in the tree. Each point is assigned an anomaly score value.

For our analysis we select the number of base estimators –number of
trees in the forest– equal to 100. The value is selected after a series of tuning976

experiments. Table 8 shows the evaluation metrics for the datasets in hand.
The best results of the isolation forest are obtained with the microservices
system, although none of the metrics is higher than 0.90 in any system.

980

6.2. One-class SVM

Support Vector Machine (SVM) is a supervised technique frequently used
in classification problems (Pisner and Schnyer, 2020). In general, it lever-
ages hyperplanes in multi-dimensional space in order to separate classes984

of points. The distance between the nearest points is known as the margin.
The core idea of SVM is to find a Maximum Marginal Hyperplane (MMH)
that best separates the points into classes. Given labeled training data, the
technique produces an optimal hyperplane that allows to classify new points.988

40

Table 9: One-class SVM: evaluation metrics.

system recall precision F1 score

industrial 0.59 0.88 0.71

microservices 0.84 0.87 0.85

BG/L 0.92 0.93 0.92

Hadoop 0.68 0.78 0.73

Although SVM is typically used to solve binary classification problems,
it can also be leveraged for one-class problems, where the training data
belong to one class. In this context, the model is trained to learn what
is “normal” so that it can identify whether new data points belong to the992

“normal” class or not. The technique captures the density of the majority
class and classifies data points on the extremes of the density function as
outliers. This alternative SVM is referred to as one-class SVM (Schölkopf
et al., 2001).996

In order to apply the one-class SVM technique to the datasets in hand,
we leverage scikit-learn. The main di↵erence with a standard SVM is
that a one-class SVM is fitted in an unsupervised manner and does not
provide the typical hyperparameters for tuning the margin. In particular, it1000

provides a hyperparameter nu that controls the sensitivity of the technique
and should be tuned to the approximate ratio of outliers in the data. For
our experiments we set nu=0.05, which we found to be a suitable value for
the reference datasets after tuning. Once fitted, the model is used to identify1004

anomalies by classifying the points of the test set as inliers and outliers.
Table 9 shows the results obtained for the datasets, where it can be noted
that one-class SVM achieves the best results with BG/L (i.e., recall and
precision equal to 0.92 and 0.93, respectively).1008

6.3. Decision Tree

Decision trees are typically used for the capability to infer explicable rules
from data. Given an input data point to be classified, decision is made by1012

traversing a tree-like structure starting from the root node. Each node is
characterized by a predicate meant to be tested on the input data point:
based on the outcomes of the tests, decision moves down through the tree
until a leaf is reached. In a classification problem leaves are associated to1016

the classes the input points are expected to belong. It should be noted that

41

(a) Industrial system. (b) Microservices system.

(c) BG/L. (d) Hadoop.

Figure 19: Sensitivity analysis of tree size and number of leaves of the decision tree with
respect to the minNumObj parameter.

the decision tree is a supervised classification technique. At training time it
requires both normative and anomalous data points, and the availability of
the labels in order to infer the decision predicates. This is a key limitation in1020

applying decision trees to many real-life scenarios because training data will
likely not cover all the potential anomalies that may occur in production.
Analysis is done with the J48 tree implementation available with WEKA.
For each dataset, we train and test the decision tree by means of a K fold1024

cross validation approach. In consequence, the dataset is split into K=10
folds fi (1i10), beforehand; for each fold fi we train the decision tree with
9 folds fj (j 6=i) and test it with the “held-out” fold fi.

42

Hyperparameters selection. The outcome of a decision tree may de-1028

pend on the specific hyperparameters selected. Among the others, minNu-
mObj is the hyperparameter that regulates the number of leaves that will be
created when learning the tree: the lower the value, the higher the number
of leaves and classification paths, thus causing overfitting. We perform a1032

sensitivity analysis of the decision tree by varying minNumObj.
Figure 19 shows the sensitivity of tree-related figures –namely tree size

and number of leaves– with respect to minNumObj for the systems. The
parameter minNumObj is varied between 1 and 30; for each value of minNu-1036

mObj we learn and test the decision tree by means of the K fold approach as
explained above. We note that both tree size and number of leaves decrease
as minNumObj increases. For example, in the industrial system dataset (Fig-
ure 19a) the number of leaves is 40 when minNumObj=1 and then it starts1040

flattening at minNumObj=5; similarly, the number of leaves drops from 19
to 9 when minNumObj increases from 1 to 10 in the microservices system
(Figure 19b). This issue is much more exacerbated in the BG/L dataset,
which accounts for a larger number of attributes than the industrial and the1044

microservices system. As shown in Figure 19c, at minNumObj=1 leaves and
tree size are equal to 166 and 331; these figures drop sharply until they stabi-
lize at 18 and 35, respectively, at minNumObj=30. As for Hadoop in Figure
19d, both tree size and number of leaves flatten at minNumObj=10. A large1048

number of leaves indicates very specialized decision paths that tend to overfit
the data and –in turn– to bias the evaluation metrics.

Figure 20 shows the evaluation metrics of the decision tree, i.e., F1 score,
recall and precision, with respect to minNumObj. It can be noted that the1052

metrics are strongly sensitive to changes of minNumObj for all the systems
in hand. For example, in the industrial system the recall drops from 0.960
to 0.945 when minNumObj increases from 5 to 10 as shown in Figure 20a;
similar considerations can be done for the microservices system and BG/L.1056

Based on Figure 19, it can be reasonably stated that a “stable” tree model
–where tree size and number of leaves stop changing sharply– is given by
minNumObj=10. Whilst much of the work in the area overlooks this aspect,
a stable tree provides a non-overfitted reflection of the data. Values of recall,1060

precision and F1 score obtained for all the systems with the decision tree at
minNumObj=10 are shown in Table 10. In all the cases, if not BG/L, recall,
precision and F1 score are higher than 0.95; as for BG/L, the value of the
metrics is 0.92.1064

43

(a) Industrial system. (b) Microservices system.

(c) BG/L. (d) Hadoop.

Figure 20: Sensitivity analysis of F1 score, recall, precision of the decision tree with respect
to the minNumObj parameter.

Table 10: Decision tree: evaluation metrics.

system recall precision F1 score

industrial 0.95 0.95 0.95

microservices 0.96 0.96 0.96

BG/L 0.92 0.92 0.92

Hadoop 0.97 0.97 0.97

6.4. Vanilla AE

A vanilla autoencoder (AE) is an autoencoder that consists of only one
hidden layer between the input and the output layer (Skansi, 2018). Typi-1068

44

Table 11: Vanilla autoencoder: evaluation metrics.

system recall precision F1 score

industrial 0.48 0.97 0.64

microservices 0.65 0.98 0.78

BG/L 0.81 0.91 0.86

Hadoop 0.98 0.95 0.97

Table 12: Variational autoencoder: evaluation metrics.

system recall precision F1 score

industrial 0.71 0.97 0.82

microservices 0.76 0.94 0.84

BG/L 0.99 0.93 0.96

Hadoop 0.84 0.89 0.87

cally, the input layer has the same dimension as the output layer since the
autoencoder attempts to reconstruct the input data point. Vanilla AEs have
been used to address anomaly detection tasks. In our experiment we consider
a vanilla AE with a hidden layer of 64 neurons; therefore, it includes N -64-N1072

neurons, where N is the number of logging entities for a given dataset. All
other training hyperparameters are the same as AutoLog because they return
the best result also for the vanilla AE. Table 11 shows the results obtained
for the datasets. We observe that –applied to our datasets– the vanilla AE1076

tends to achieve a high precision (e.g., 0.98 for the microservices system).
On the other hand, recall is much lower; one notable exception is Hadoop
where the recall is 0.98.

6.5. Variational AE1080

A variational autoencoder (VAE) is similar to AEs as structure, but tries
to obtain a better –continuous and not scattered– latent space by adopting
a probabilistic distribution of each attribute in latent space (Kingma and
Welling, 2019). The encoder stage of a VAE generates two vectors: a vector1084

of means (µ) and a vector of variances (⌃); a vector z is then generated
using the distribution N(µi,⌃i), which will identify the points of the latent
space. The addition of the KullbackLeibler (KL) divergence (van Erven and
Harremos, 2014) to the cost function makes it possible to obtain a distribution1088

as close as possible to a reference one, typically a Gaussian. The samples

45

Figure 21: Industrial system.

Figure 22: Microservices system.

obtained from this distribution are fed to a conventional decoder network.
For our VAE analysis, we select a latent layer of 2 neurons, while the

encoder and the decoder layers have 256 neurons after tuning on the valida-1092

tion sets; as for the remaining training hyperparameters, they are the same
of AutoLog because they returned the best results also for the VAE after
tuning. Table 12 shows the results obtained for the reference systems. The
best results are obtained with BG/L, where the VAE returns 0.99 recall and1096

0.93 precision. Overall, the precision of the VAE tends to be high across the
systems –with the only exception of Hadoop– while recall is generally low.

6.6. Comparison of the Results

Barplots in Figure 21, 22, 23 and 24 show the evaluation metrics for all1100

the techniques and systems addressed by our study. For each system, bars are
grouped by evaluation metric in order to compare the di↵erent techniques;
for each group of bars, the rightmost cross-patterned bar refers to the met-
rics of AutoLog presented in Table 6. Results reveal a mixture of findings,1104

depending on the system and the technique. Isolation forest, one-class SVM

46

Figure 23: BG/L.

Figure 24: Hadoop.

and vanilla AE tend to achieve the lowest recall for all the systems; excep-
tions include (i) BG/L, where the recall of one-class SVM is 0.92 –thus equal
to the decision tree– and (ii) Hadoop, where the vanilla AE performs as well1108

as AutoLog. As said, the precision of vanilla AE is notably high for all the
systems; however, its recall ranges between 0.48 (industrial system) and 0.98
(Hadoop), which makes it among the worst performing in terms of F1 score
for all the systems if not Hadoop. As for the variational AE, it performs1112

reasonably well only in the case of BG/L. AutoLog achieves among the high-
est values of the metrics for all the systems with few sporadic exceptions, as
for example (i) the microservices systems, where the precision of AutoLog
(0.97) is similar to the vanilla AE (0.98), or (ii) BG/L, where the F1 score1116

of AutoLog (0.95) is similar to the variational AE (0.96). However, it should
be noted that in spite of these sporadic exceptions, none of the techniques
is able to fit all the systems when compared to AutoLog. Most notably,
AutoLog is strongly competitive when compared to the decision tree, i.e.,1120

a typical supervised technique, that –di↵erent from AutoLog– requires both

47

normative and anomalous data points for training.
It is worth noting that, while the industrial and microservices systems

were available at a private premise, BG/L and Hadoop are public datasets1124

and widely-used benchmarks in log-based anomaly detection. In conse-
quence, we can compare the metrics of AutoLog with other similar pro-
posals in the literature. Authors in (Meng et al., 2019) propose a method
–called LogAnomaly– and assess several state-of-the-art anomaly detection1128

methods on the same BG/L dataset used in our paper, such as LogClus-
ter and DeepLog. LogAnomaly is based on template2Vec, i.e., a template
representation method to extract semantic and syntax information from log
templates inspired by word embedding. According to the figures reported in1132

(Meng et al., 2019) the F1 score of AutoLog in BG/L (0.95) is higher than
DeepLog (0.93) and LogCluster (0.57) and similar to LogAnomaly (0.96).
Unlike LogAnomaly, which achieves 0.94 recall and 0.97 precision, AutoLog
achieves 0.98 recall and 0.93 precision; on the other hand, the precision of1136

AutoLog is higher than DeepLog (0.90). As for the Hadoop dataset, the F1
score of AutoLog (0.97) is equal to the value achieved on the same dataset
by the recent OneLog approach (Hashemi and Mäntylä, 2021). Overall, Au-
toLog is inline with other anomaly detection techniques assessed with the1140

reference BG/L and Hadoop datasets.
Coming to the comparison with approaches implying sequential embed-

ding, the work (Guo et al., 2021) applies BERT to the BG/L log and achieves
0.92 recall and 0.89 precision: both the figures are much lower than AutoLog1144

applied to the same dataset. As for other related approaches using BERT
with BG/L, it is worth mentioning (Hirakawa et al., 2020) and (Li et al.,
2020). The former uses BERT-Base as a transformer encoder and its F1
score on BG/L is 0.89, thus lower than AutoLog: more important, a con-1148

ventional LSTM autoencoder was demonstrated to achieve a much lower F1
score equals to 0.85 (Hirakawa et al., 2020). The latter proposes SwissLog (Li
et al., 2020), which is applied in conjunction with LSTM, Bidirectional LSTM
(BiLSTM) and Attention-based BiLSTM. The F1 score of these three vari-1152

ants on BG/L is 0.95, 0.96 and 0.99, respectively: the F1 score of AutoLog is
in line with the first two variants, although lower than the Attention-based
BiLSTM. Nevertheless, it must be noted that SwissLog is conceived and
tested with a much more narrow fault model, consisting of those faults re-1156

sulting in log sequence order changes and log time interval changes: di↵erent
from SwissLog, AutoLog is not constrained by specific types of faults.

48

7. Limitations and Threats to Validity

As for many existing anomaly detection techniques, AutoLog relies on1160

the availability of normative logs; moreover, AutoLog does not need to know
anomalies at training time. Whilst our approach is feasible in practice, we
are aware that assembling normative logs is a complex matter and may
depend on the specific system in hand. For example, both the industrial and1164

microservices systems were deployed in a dedicated LAN environment along
with client applications supplied by the vendor and representative bench-
marks, which makes us confident that logs actually reflected normative con-
ditions. In practice, normative logs might accidentally account for anoma-1168

lous events, which are hard to be filtered out before training. In this respect,
the 90th percentile approach –used to determine the detection threshold of
AutoLog– aims to mitigate the impact of measurement outliers due to ac-
cidental anomalies in the normative logs. It is worth noting that in BG/L1172

we deal with spontaneous anomalies with much less confidence on the gen-
uineness of the normative logs. In this respect, the F1 score obtained by
AutoLog for BG/L is lower than the industrial and microservices systems,
although inline with other anomaly detection techniques assessed with the1176

same dataset.
At the current stage of deployment, AutoLog is a “partial” fit for the

detection of slow attacks, whose activity may span multiple chunks. In fact,
while AutoLog can detect the activity occurring within individual chunks, it1180

misses the ability to “connect the dots” across multiple chunks collected at
di↵erent times. A slow attack may cause AutoLog to generate multiple alerts,
which are supposed to be reconciled later on. On the other hand, AutoLog
can detect the activity a↵ecting multiple chunks collected at the same time.1184

Regarding the anomaly detection technique implemented by AutoLog,
semi-supervised training tends to obtain from the AE high-quality recon-
structions of normative inputs, in such a way that anomalies can be identi-
fied by a higher reconstruction error. However, recent studies point out that1188

sometimes autoencoders can provide good reconstructions also for outliers,
which are misclassified as being in-distribution. This is obviously detrimen-
tal for anomaly detection. Possible solutions tend to improve the anomaly
detection capabilities of a simple autoencoder design by resorting to autoen-1192

coder ensembles (randomly connected autoencoders with di↵erent structures
and connection densities (Chen et al., 2017)), discriminator networks with a
direct anomaly score (Tong et al., 2020), or the use of the Grubbs and the

49

PauTa criterion to identify the reconstruction errors corresponding to the1196

outliers based on the traditional threshold method (Wan et al., 2019). In
our experiments, which involved the use of very heterogeneous data sources,
the problem did not arise –or was very limited in size– as documented by
the good detection performance obtained though our AE. However, possible1200

outlier misclassification is an issue to be considered for our future work to
optimize the current design.

As for any data-driven study, there may be concerns regarding the validity
and generalizability of the results. We discuss them based on the four aspects1204

of validity listed in (Wohlin et al., 2000).
Construct validity. The study builds around the intuition that numeric

scores computed from system logs can be used for detecting anomalies of com-
puter systems. This construct has been investigated in the context of four1208

systems: an industrial system in the transportation domain, a microservices-
based installation implementing a standard multimedia architecture adopted
by large telcos, up to publicly-available system logs –common benchmarks
in the literature– from a BG/L supercomputer and a Hadoop cluster. The1212

industrial and microservices systems are run with representative load gen-
erators. The BG/L log is a public dataset and accounts for hardware and
software errors observed over 215 days of operations at LLNL; Hadoop data
contain di↵erent types of service failures. The study is supported by ex-1216

tensive experimentation leveraging widely-consolidated statistical methods,
deep learning framework and evaluation metrics.

Internal validity. The results and key findings of this paper are based
on direct measurement experiments, where we analyze systems logs from the1220

reference systems obtained under a mixture of simulated and spontaneous
normative operations and anomalies. For example, simulated anomalies in
the industrial and microservices systems consist of bruteforce authentica-
tion attempts, tampering and misuse, which are inspired by widely-accepted1224

taxonomies in the area. We rely on well-founded log analysis methods for
extracting quantitative scores from logs. Noteworthy, AutoLog –based solely
on the knowledge of the normative data points– is not biased by the anoma-
lies in hand. The use of such diverse system logs and anomalies aims to1228

mitigate internal validity threats.
Conclusion validity. Conclusions have been inferred by assessing four

independent system logs and the sensitivity of key results with respect to the
experimental choices. For example, we analyze the impact of di↵erent au-1232

toencoder configurations on the reconstruction error; similarly, the decision

50

tree is assessed by varying a critical model parameter, such as minNumObj.
Experiments are complemented by a preliminary discussion on PCA and
clustering to gain insights into the challenges existing in our domain. More1236

importantly, we compare AutoLog with a wide set of techniques including
isolation forest, one-class SVM, decision trees, vanilla autoencoder and vari-
ational autoencoder. We present an extensive discussion of the results. The
key findings of the study are consistent across the datasets, which provides1240

a reasonable level of confidence on the analysis.
External validity. The steps of our analysis can be applied to other

systems. Nowadays, logs are ubiquitously emitted by almost any system and
there exists a wide range of tools for storing and handling logs, which make1244

our approach definitively feasible in practice. In fact, in this paper we suc-
cessfully ported the experiments across four independent systems –emitting
heterogeneous logs– to mitigate external validity threats. Our analysis ap-
proach does not interfere with system operations: as only information from1248

logs is used, the approach is inherently non intrusive. We are confident that
the experimental details provided in the paper would support the replication
of our study by future researchers and practitioners.

8. Conclusion and Future Work1252

This paper proposed AutoLog, a novel approach for anomaly detection
based on deep autoencoding of system logs. AutoLog aims to overcome
the challenges of existing log management technologies for the analysis of
built-in and proprietary logs files, which lack standard formats. More im-1256

portantly, AutoLog capitalizes on semi-supervised learning, which does not
require anomalies during training. This is potentially valuable to complement
current technologies that rely on pre-established specifications of anomalies.
We have conducted an extensive experimentation in the context of four sys-1260

tems and compared AutoLog with a wide set of techniques. The recall of
AutoLog ranged between 0.96 and 0.99, while its precision was within 0.93
and 0.98, depending on the system. AutoLog is strongly competitive if com-
pared to a typical supervised technique, such as decision trees; as for BG/L1264

and Hadoop –used as benchmarks by related papers– AutoLog is inline with
other log-based anomaly detection techniques available in the literature.

In the future, we will extend our analysis to further systems as well as
to existing security datasets, in order to understand the limitations of Au-1268

toLog and potential mitigations. At the time being, there are several open

51

challenges in anomaly detection that reflect on AutoLog. For example, the
availability and construction of normative baselines is a complex matter in
log analysis, given the variability of real-life workload and systems. More-1272

over, log analysis is a “moving” target: software upgrades or changes to the
configurations may alter meaning and character of the logs. As for the detec-
tion technique used by AutoLog, one key challenge is the threshold selection
technique and how it is a↵ected by accidental anomalies intertwined with1276

the normative data. In this respect, future research will investigate some
countermeasures to mitigate these issues as well as other threshold selection
methods. Other important research avenues pertain to potential strategies to
partition logs into chunks, such as considering overlapping chunks, and the1280

explicative power of the autoencoder. Future research will also investigate
the actions attackers might take to evade detection and the detection of slow
attacks. From a technical standpoint, we will address the implementation of
accessory components for AutoLog, such a re-training mechanism, and the1284

use of plugins to extend traditional SIEM’s capabilities with the proposed
anomaly detection method.

References

Adiga, N. R. et al. (2002). An overview of the BlueGene/L supercomputer.1288

In Proc. Conference on Supercomputing, pages 1–22. IEEE.

Almotiri, J., Elleithy, K., and Elleithy, A. (2017). Comparison of autoencoder
and principal component analysis followed by neural network for e-learning
using handwritten recognition. In Proc. Long Island Systems, Applications1292

and Technology Conference, pages 1–5. IEEE.

Aygun, R. C. and Yavuz, A. G. (2017). Network Anomaly Detection with
Stochastically Improved Autoencoder Based Models. In Proc. Interna-
tional Conference on Cyber Security and Cloud Computing, pages 193–198.1296

IEEE.

Bertero, C., Roy, M., Sauvanaud, C., and Tredan, G. (2017). Experience
report: Log mining using natural language processing and application to
anomaly detection. In Proc. International Symposium on Software Relia-1300

bility Engineering, pages 351–360. IEEE.

52

Bhatt, S., Manadhata, P. K., and Zomlot, L. (2014). The operational role
of security information and event management systems. IEEE Security
Privacy, 12(5):35–41.1304

Campos, J. R., Vieira, M., and Costa, E. (2018). Exploratory study of
machine learning techniques for supporting failure prediction. In Proc.
European Dependable Computing Conference, pages 9–16. IEEE.

Carrington, A. M., Manuel, D. G., Fieguth, P. W., Ramsay, T., Osmani,1308

V., Wernly, B., Bennett, C., Hawken, S., McInnes, M., Magwood, O.,
Sheikh, Y., and Holzinger, A. (2021). Deep ROC analysis and AUC as
balanced average accuracy to improve model selection, understanding and
interpretation. arXiv:2103.11357.1312

Catillo, M., Rak, M., and Villano, U. (2020). 2L-ZED-IDS: A two-level
anomaly detector for multiple attack classes. In Proc. Web, Artificial In-
telligence and Network Applications, Advances in Intelligent Systems and
Computing, pages 687–696. Springer.1316

Chen, J., Sathe, S., Aggarwal, C., and Turaga, D. (2017). Outlier detection
with autoencoder ensembles. In Proc. SIAM International Conference on
Data Mining, pages 90–98. SIAM.

Cinque, M., Cotroneo, D., Della Corte, R., and Pecchia, A. (2016). Charac-1320

terizing direct monitoring techniques in software systems. IEEE Transac-
tions on Reliability, 65(4):1665–1681.

Cinque, M., Cotroneo, D., and Pecchia, A. (2018). Challenges and directions
in security information and event management (SIEM). In Proc. Interna-1324

tional Symposium on Software Reliability Engineering Workshops, pages
95–99. IEEE.

Du, J., Vong, C., Pun, C., Wong, P., and Ip, W. (2017a). Post-boosting of
classification boundary for imbalanced data using geometric mean. Neural1328

Networks, 96:101–114.

Du, M., Li, F., Zheng, G., and Srikumar, V. (2017b). DeepLog: Anomaly
detection and diagnosis from system logs through deep learning. In Proc.
Conference on Computer and Communications Security, pages 1285–1298.1332

ACM.

53

Fahimeh, F. and Heikkonen, J. (2018). A Deep Auto-Encoder based Ap-
proach for Intrusion Detection System. In Proc. International Conference
on Advanced Communications Technology, pages 178–183. IEEE.1336

Farshchi, M., Schneider, J.-G., Weber, I., and Grundy, J. (2018). Metric
selection and anomaly detection for cloud operations using log and metric
correlation analysis. Journal of Systems and Software, 137:531 – 549.

Farzad, A. and Gulliver, T. A. (2020). Unsupervised log message anomaly1340

detection. ICT Express, 6(3):229–237.

Farzad, A. and Gulliver, T. A. (2021). Log Message Anomaly Detection and
Classification Using Auto-B/LSTM and Auto-GRU. arXiv:1911.08744.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT1344

Press.

Guo, H., Yuan, S., and Wu, X. (2021). LogBERT: Log Anomaly Detection
via BERT. arXiv:2103.04475.

Hansen, J. and Siewiorek, D. (1992). Models for time coalescence in event1348

logs. In Proc. International Symposium on Fault-Tolerant Computing,
pages 221–227. IEEE.

Hashemi, S. and Mäntylä, M. (2021). OneLog: Towards end-to-end training
in software log anomaly detection. arXiv:2104.07324.1352

Hawkins, S., He, H., Williams, G., and Baxter, R. (2002). Outlier Detection
Using Replicator Neural Networks. In Proc. International Conference on
Data Warehousing and Knowledge Discovery, pages 170–180. Springer.

He, P., Zhu, J., He, S., Li, J., and Lyu, M. R. (2016a). An evaluation study1356

on log parsing and its use in log mining. In Proc. International Conference
on Dependable Systems and Networks, pages 654–661. IEEE.

He, S., Zhu, J., He, P., and Lyu, M. R. (2016b). Experience Report: System
Log Analysis for Anomaly Detection. In Proc. International Symposium1360

on Software Reliability Engineering, pages 207–218. IEEE.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algo-
rithm for Deep Belief Nets. Neural Computation, 18(7):1527–1554.

54

Hirakawa, R., Tominaga, K., and Nakatoh, Y. (2020). Software log anomaly1364

detection through one class clustering of transformer encoder representa-
tion. In Stephanidis, C. and Antona, M., editors, Proc. HCI International
- Posters, pages 655–661. Springer.

Holzinger, A., Hörtenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S.,1368

Pinho, A. J., and Koslicki, D. (2014). On entropy-based data mining. In
Holzinger, A. and Jurisica, I., editors, Interactive Knowledge Discovery
and Data Mining in Biomedical Informatics: State-of-the-Art and Future
Challenges, pages 209–226. Springer.1372

Kim, S., Jo, W., and Shon, T. (2020). APAD: Autoencoder-based payload
anomaly detection for industrial IoE. Applied Soft Computing, 88:106017.

Kingma, D. P. and Welling, M. (2019). An introduction to variational au-
toencoders. Foundations and Trends in Machine Learning, 12(4):307–392.1376

Li, X., Chen, P., Jing, L., He, Z., and Yu, G. (2020). Swisslog: Robust and
unified deep learning based log anomaly detection for diverse faults. In
Proc. International Symposium on Software Reliability Engineering, pages
92–103. IEEE.1380

Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y., and Chen, X. (2016). Log cluster-
ing based problem identification for online service systems. In Proc. Inter-
national Conference on Software Engineering Companion, pages 102–111.
IEEE.1384

Liu, D., Zhao, Y., Xu, H., Sun, Y., Pei, D., Luo, J., Jing, X., and Feng, M.
(2015). Opprentice: Towards practical and automatic anomaly detection
through machine learning. In Proc. Internet Measurement Conference,
pages 211–224. ACM.1388

Liu, F. T., Ting, K. M., and Zhou, Z. (2008). Isolation forest. In Proc.
International Conference on Data Mining, pages 413–422. IEEE.

Liu, J., Song, K., Feng, M., Yan, Y., Tu, Z., and Zhu, L. (2021). Semi-
supervised anomaly detection with dual prototypes autoencoder for indus-1392

trial surface inspection. Optics and Lasers in Engineering, 136:106324.

55

Lu, S., Rao, B., Wei, X., Tak, B., Wang, L., and Wang, L. (2017). Log-
based abnormal task detection and root cause analysis for spark. In Proc.
International Conference on Web Services, pages 389–396. IEEE.1396

Maci-Fernndez, G., Camacho, J., Magn-Carrin, R., Garca-Teodoro, P.,
and Thern, R. (2018). UGR’16: A new dataset for the evaluation of
cyclostationarity-based network IDSs. Computers & Security, 73:411–424.

Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R.,1400

Tao, S., Sun, P., and Zhou, R. (2019). LogAnomaly: Unsupervised Detec-
tion of Sequential and Quantitative Anomalies in Unstructured Logs. In
Proc. International Joint Conf. on Artificial Intelligence, pages 4739–4745.
International Joint Conferences on Artificial Intelligence Organization.1404

Miller, D., Harris, S., Harper, A., VanDyke, S., and Blask, C. (2010). Security
Information and Event Management (SIEM) Implementation. McGraw-
Hill Education.

Nguyen, Q. P., Lim, K. W., Divakaran, D. M., Low, K. H., and Chan, M. C.1408

(2019). GEE: A gradient-based explainable variational autoencoder for
network anomaly detection. In Proc. Conference on Communications and
Network Security, pages 91–99. IEEE.

Oliner, A., Ganapathi, A., and Xu, W. (2012). Advances and challenges in1412

log analysis. Communications of the ACM, 55(2):55–61.

Oliner, A. and Stearley, J. (2007). What Supercomputers Say: A Study
of Five System Logs. In Proc. International Conference on Dependable
Systems and Networks, pages 575–584. IEEE.1416

Oprea, A., Li, Z., Yen, T., Chin, S. H., and Alrwais, S. (2015). Detection
of early-stage enterprise infection by mining large-scale log data. In Proc.
International Conference on Dependable Systems and Networks, pages 45–
56. IEEE.1420

Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021). Deep Learning for
Anomaly Detection: A Review. ACM Computing Surveys, 54(2):1–38.

Pisner, D. A. and Schnyer, D. M. (2020). Chapter 6 - Support vector machine.
In Machine Learning, pages 101–121. Academic Press.1424

56

Qian, Y., Ying, S., and Wang, B. (2020). Anomaly detection in distributed
systems via variational autoencoders. In Proc. International Conference
on Systems, Man, and Cybernetics, pages 2822–2829. IEEE.

Quan, X., Wenyin, L., and Qiu, B. (2011). Term weighting schemes for ques-1428

tion categorization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(5):1009–1021.

Ru↵, L., Vandermeulen, R. A., Grnitz, N., Binder, A., Mller, E., Mller, K.-
R., and Kloft, M. (2020). Deep semi-supervised anomaly detection. In1432

Proc. International Conference on Learning Representations.

Ruiu, D. (1999). Cautionary tales: stealth coordinated attack how to. http:
//www.ouah.org/stealthhowto.html.

Sakurada, M. and Yairi, T. (2014). Anomaly detection using autoencoders1436

with nonlinear dimensionality reduction. In Proc. Workshop on Machine
Learning for Sensory Data Analysis, pages 4–11. ACM.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic
text retrieval. Information Processing & Management, 24(5):513 – 523.1440

Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., and
Williamson, R. C. (2001). Estimating the support of a high-dimensional
distribution. Neural Computing, 13(7):14431471.

Shone, N., Ngoc, T. N., Phai, V. D., and Shi, Q. (2018). A Deep Learning1444

Approach to Network Intrusion Detection. IEEE Transactions on Emerg-
ing Topics in Computational Intelligence, 2(1):41–50.

Skansi, S. (2018). Autoencoders, pages 153–163. Springer International Pub-
lishing.1448

Song, C., Liu, F., Huang, Y., Wang, L., and Tan, T. (2013). Auto-encoder
based data clustering. In Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, pages 117–124. Springer.

Stearley, J. and Oliner, A. J. (2008). Bad words: Finding faults in Spirit’s1452

syslogs. In Proc. International Symposium on Cluster Computing and the
Grid, pages 765–770. IEEE.

57

Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D. (2019). Robust
Anomaly Detection for Multivariate Time Series through Stochastic Re-1456

current Neural Network. In Proc. International Conference on Knowledge
Discovery & Data Mining, pages 2828–2837. ACM.

Svacina, J., Ra↵ety, J., Woodahl, C., Stone, B., Cerny, T., Bures, M., Shin,
D., Frajtak, K., and Tisnovsky, P. (2020). On Vulnerability and Secu-1460

rity Log analysis: A Systematic Literature Review on Recent Trends. In
Proc. International Conference on Research in Adaptive and Convergent
Systems, pages 175–180. ACM.

Tong, A., Wolf, G., and Krishnaswamyt, S. (2020). Fixing bias in1464

reconstruction-based anomaly detection with Lipschitz discriminators. In
Proc. International Workshop on Machine Learning for Signal Processing,
pages 1–6. IEEE.

van Erven, T. and Harremos, P. (2014). Rényi divergence and1468

Kullback-Leibler divergence. IEEE Transactions on Information Theory,
60(7):3797–3820.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A.
(2010). Stacked denoising autoencoders: Learning useful representations1472

in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408.

Wadekar, A., Gupta, T., Vijan, R., and Kazi, F. (2019). Hybrid CAE-
VAE for Unsupervised Anomaly Detection in Log File Systems. In Proc.1476

International Conference on Computing, Communication and Networking
Technologies, pages 1–7. IEEE.

Wan, F., Guo, G., Zhang, C., Guo, Q., and Liu, J. (2019). Outlier Detection
for Monitoring Data Using Stacked Autoencoder. IEEE Access, 7:173827–1480

173837.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,
A. (2000). Experimentation in Software Engineering: An Introduction.
Kluwer Academic.1484

Xu, W., Huang, L., Fox, A., Patterson, D. A., and Jordan, M. I. (2008).
Mining console logs for large-scale system problem detection. In Proc.

58

Tackling Computer Systems Problems with Machine Learning Techniques,
pages 4–4. USENIX.1488

Yadav, R. B., Kumar, P. S., and Dhavale, S. V. (2020). A Survey on Log
Anomaly Detection using Deep Learning. In Proc. International Confer-
ence on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions), pages 1215–1220. IEEE.1492

Yang, R., Qu, D., Gao, Y., Qian, Y., and Tang, Y. (2019). nLSALog: An
anomaly detection framework for log sequence in security management.
IEEE Access, 7:181152–181164.

Yuan, Y., Srikant Adhatarao, S., Lin, M., Yuan, Y., Liu, Z., and Fu, X.1496

(2020). ADA: Adaptive deep log anomaly detector. In Proc. INFOCOM -
Conference on Computer Communications, pages 2449–2458. IEEE.

Zhang, K., Xu, J., Min, M. R., Jiang, G., Pelechrinis, K., and Zhang, H.
(2016). Automated IT system failure prediction: A deep learning approach.1500

In Proc. International Conference on Big Data, pages 1291–1300. IEEE.

Zhang, Y., Lu, Z., and Wang, S. (2021). Unsupervised feature selection via
transformed auto-encoder. Knowledge-Based Systems, 215:106748.

Zhao, Y., Hao, K., Tang, X., Chen, L., and Wei, B. (2021). A conditional1504

variational autoencoder based self-transferred algorithm for imbalanced
classification. Knowledge-Based Systems, 218:106756.

Zoppi, T., Ceccarelli, A., and Bondavalli, A. (2016). Context-awareness
to improve anomaly detection in dynamic service oriented architectures.1508

In Skavhaug, A., Guiochet, J., and Bitsch, F., editors, Computer Safety,
Reliability, and Security, pages 145–158. Springer.

59

