

NOTICE: this is the author’s version of a work that was accepted for
publication in Information Sciences. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in Information
Sciences, Volumes 454–455, July 2018 , Pages 344-362
DOI 10.1016/j.ins.2018.04.081	

Security-by-design in Multi-Cloud Applications: An
Optimization Approach

Valentina Casolaa, Alessandra De Benedictisa,⇤, Massimiliano Rakb, Umberto
Villanoc

a
Department of Electrical Engineering and Information Technologies, University of Naples

Federico II, Naples, Italy

b
Department of Computer Engineering, University of Campania Luigi Vanvitelli, Aversa,

Italy

c
Department of Engineering, University of Sannio, Benevento, Italy

Abstract

Currently an increasing number of customers require cloud services with guar-

anteed security levels. At this aim, the adoption of multi-cloud strategies is

spreading in a large number of interesting application domains, since they may

potentially improve security and reduce development costs. However, the prob-

lem of identifying the optimal distribution of the components of a cloud appli-

cation on resources belonging to multiple and heterogeneous providers is very

challenging, especially in the presence of di↵erent security and performance con-

straints.

This paper presents a novel security-driven approach for the design, devel-

opment and deployment of multi-cloud applications. It is based on a fully-

automatable process that supports the developer from the elicitation of the

application requirements up to the identification of the optimal deployment

configuration, allowing to find the best compromise between overall cost and

achieved level of security. The proposed optimization process takes explicitly

into account two critical aspects that are often overlooked in similar approaches,

namely the cloud on-demand leasing model for the allocation of resources and

the impact that the deployment has on the security policies actually imple-

⇤Alessandra De Benedictis
Email address: alessandra.debenedictis@unina.it (Alessandra De Benedictis)

Preprint submitted to Information Sciences March 30, 2018

mented by a complex application.

Keywords: Security Service Level Agreement SLA, Analytic Hierarchy

Process AHP, Security-driven Cloud Deployment Optimization, Secure

Multi-cloud Application

1. Introduction

Over the last few years, new methods and techniques are emerging to support

the development and automatic deployment of innovative ICT solutions. In this

context, the adoption of multi-cloud strategies is recently becoming more and

more interesting, to improve overall enterprise performance, to reduce costs and5

also to improve security. The term multi-cloud refers to the idea of accessing

resources from di↵erent Cloud Service Providers (CSPs) that have not explicitly

agreed to join their resources and to form a federation [21]. The use of multiple

infrastructures can help meet the needs of diverse customers and, potentially,

also minimize the risk of data loss or downtime due to a localized component10

failure. Moreover, it could be profitably exploited to distribute the components

of an application on the providers that o↵er the best security guarantees with

respect to their specific requirements.

Despite the high potentiality of multi-clouds, they pose many problems that

require further research [40]. Security is a challenging issue even in single-15

provider scenarios, due to the di↵erent security policies and regulations adopted

by the CSPs. The problem is significantly harder when there is concurrence

of several cloud providers in the delivery of a single application. It is worth

pointing out that the overall level of security that can be ascribed to a multi-

cloud application depends not only on the level of security declared in the Service20

Level Agreements (SLAs) by the providers o↵ering the resources used for the

application deployment, but also on the way the application components interact

with one another, and on the resulting impact on the implemented security

policies. This dramatically complicates the choice of a suitable deployment

configuration: A developer has to take into account too many parameters to25

2

decide which is the optimal allocation of the application components on multiple

providers o↵ering di↵erent SLAs and di↵erent delivery models.

Moreover, the on-demand leasing model that is a distinctive feature of cloud

environments makes the deployment problem in clouds substantially di↵erent

from traditional resource allocation and scheduling problems, encountered in30

grids and other domains, for which well-known and e↵ective solutions exist.

These are usually modelled in terms of the generalized assignment problem

[27], where the number of available resources is essentially pre-determined and

fixed, and the goal is to minimize cost and/or maximize performance. In the

cloud and multi-cloud environments, instead, the number of available o↵erings is35

potentially unlimited, and appropriate deployment optimization strategies must

be devised.

To be able to take advantage of the benefits of the multi-cloud approach

and to optimize the adoption of cloud resources from multiple providers, while

taking into account the needed security guarantees, new security-driven design40

and deployment approaches must be introduced. To this end, this paper presents

multiple contributions:

• We define a security-by-design development process aimed to support a

developer in building and deploying a secure multi-cloud application while

taking into account the potential security issues from the beginning of the45

development process, in order to reduce the risks associated with existing

vulnerabilities and threats;

• We provide a formulation of the cloud deployment problem that explicitly

takes into account the on-demand leasing model for the allocation of cloud

resources, and that allows to express security-related constraints which50

take into consideration the impact of the deployment configuration on the

overall level of security;

• We discuss a novel security-driven optimization process, aimed to identify

the deployment configuration that fulfills the existing performance and

3

security constraints while ensuring the best compromise between the de-55

ployment cost and the overall level of security achieved, based on a scale

of preferences expressed by the developer.

The remainder of the paper is structured as follows. In Section 2 we present

the security-by-design multi-cloud application development process. In Section

3 we summarize the main issues behind the functional and security design of60

a multi-cloud application and present a graphical formalism used to model ap-

plications in both a deployment-independent and deployment-specific way. In

Section 4 we formalize the cloud deployment problem, while in Section 5 we

describe in the detail the optimization process. In Section 6, in order to demon-

strate the feasibility and e�cacy of our proposal, we present a simple case study65

and discuss the main phases of the development process focusing on the deploy-

ment optimization. Finally, in Section 7 we discuss related work on scheduling

and allocation problems, and in Section 8 we draw our conclusions and sketch

future research directions.

2. The Security-by-design Approach to Multi-cloud Application De-70

velopment

A multi-cloud application can be defined as a collection of cooperating soft-

ware components (simply components, in what follows) that rely for their exe-

cution upon cloud resources leased by multiple providers. The cloud resources

can either be software components o↵ered by CSPs in SaaS mode, or infrastruc-75

tural resources. Most typically, the latter are virtual machines (VMs) onto which

custom software artifacts are deployed. Besides code design and development,

setting up a multi-cloud application also involves identifying how components

are mapped to cloud resources, i.e., finding the application deployment config-

uration. This configuration has to be identified by projecting the application80

architecture, in terms of its components and of their interconnections, onto the

multitude of CSP o↵erings, by taking into account constraints related to factors

such as performance, cost and security. In particular, in this paper we consider

4

performance constraints related to the fulfillment of the resource demand of

each application component in terms of memory and CPU usage. We do not85

consider the perceived performance of the whole application, typically specified

in terms of response time and throughput. As regards security, we are interested

in determining the deployment configuration that allows to fulfill existing secu-

rity requirements related to each individual component and to the application

as a whole. Moreover, we assume that security properties of both the available90

cloud services and the developed components and applications are expressed by

means of Service Level Agreements (SLAs). Finally, we do not consider cost as

an absolute constraint, but rather as an aspect to be taken into account in a

trade-o↵ with security, as will be clarified in the next sections.

In the remainder of this paper, we will focus on the problem of mapping95

custom software components to infrastructure resources (VMs) o↵ered by mul-

tiple providers, deferring the use of SaaS components to future work. Currently

providers o↵er several types of VMs, each characterized by di↵erent features in

terms of performance, cost and security. These di↵erences should be carefully

taken into account for the identification of the “best” deployment configuration100

to be adopted for a given application. At the state of the art, the reason-

able management of the inevitable security issues due to the de-localization of

computations is an enabling factor for the further di↵usion of the cloud com-

puting paradigm. In fact, many users still prefer to host data and software

services on premises, due to a perceived lack of security. Things are worse if105

multiple providers come into play, as the security of a multi-cloud application

is likely to be the one of the weakest link in the chain. Our proposal is the use

of a security-by-design multi-cloud development approach that aims to support

the application developer during all the development phases of a multi-cloud

application, from the specification of its high-level architecture, up to the iden-110

tification of the deployment configuration that best fits its requirements. The

proposed process consists of four main phases (see Figure 1).

During the Functional Design phase, the developer (i) describes the multi-

cloud application in terms of its high-level logic components and of their in-

5

Functional
Design

Security
Design

Optimal
Deployment
Identification

Security
Enforcement

Figure 1: The security-by-design multi-cloud development process

terconnections and (ii) specifies the requirements of each component in terms115

of its resource demand. This phase is discussed in detail in Section 3.1, where

a graph-based modeling technique suited for multi-cloud applications is also

introduced.

In the Security Design phase, the developer (i) characterizes the application

in terms of the security controls and security policies implemented internally by120

its components, and (ii) specifies the security requirements of each component,

based on the specific needs and on existing risks. This phase, as will be dis-

cussed in Section 3.2, relies upon a new cloud security model based on the use of

Security Service Level Agreements (Security SLAs) for the formalization of se-

curity policies, and the adoption of standards (as NIST SP800-53 or ISO 27000)125

for the selection of the security controls. Given the Security SLAs, security as-

sessment and risk analysis procedures are used to identify the security features

implemented by the application components and to elicit their requirements,

respectively.

The outputs of the functional and security design phases are used in the130

Optimal Deployment Identification phase to identify the optimal deployment

configurations for the components of the multi-cloud application. In particular,

the adopted optimization process, presented in detail in Section 5, is aimed at

identifying the deployment configuration that allows to fulfill the requirements

identified during design phases, while ensuring the best trade-o↵ between the135

deployment cost and the overall level of security achieved.

Depending on the specific application and on its requirements, the optimiza-

6

tion process might not be able to produce a valid result, due to the impossibility

of covering security requirements (because of the lack of security controls in the

component implementation). In these cases, an additional phase can be carried140

out, namely the Security Enforcement phase, devoted to identifying a set of

Security Libraries (i.e., software modules) suitable to provide the enforcement

of the security policies needed to cover the missing requirements. As the intro-

duction of these security libraries implies the integration of additional software

components within the application architecture, the whole process may undergo145

several iterations, until all the requirements are satisfied.

It is worth pointing out that part of the concepts behind the Functional

Design and the Security Design phases of the development process have been

introduced in the authors’ previous papers produced in the context of the Eu-

ropean projects SPECS [47] and MUSA [35]. However, in order to make this150

paper self-consistent, before going into the details of the deployment optimiza-

tion process, we will briefly deal with the design steps in Section 3.

3. Design of a Multi-cloud Application

In this section, we summarize the main issues behind the functional and

security design of a multi-cloud application. We provide the needed background155

on the techniques and methodologies used to (i) model a multi-cloud applica-

tion from the point of view of its high-level architecture and of its deployment

configuration, and (ii) enrich its description with functional and non-functional

features and requirements.

3.1. Functional Design160

The goal of the Functional Design phase consists in identifying the main

components of a multi-cloud application, along with their mutual relationships.

There exist several languages to model cloud applications, such as CAMEL

[38] and CloudML [46]. In this paper, we adopt a graph-based model named

Multi-cloud Application Composition Model (MACM) [42], which can be di-165

rectly obtained from descriptions in the above languages. Being a graph-based

7

representation, MACM allows to describe in a simple and immediate way the

logic building blocks of an application, their mutual relationships and the infor-

mation related to their deployment. Moreover, manipulating the representation

and obtaining the information needed for deployment and security evaluation170

can be achieved easily by means of common graph-based query tools. However,

it is worth pointing out that an MACM can be used to describe the static de-

ployment of (multi-)cloud applications and to put in evidence the relationships

among nodes that a↵ect security properties, but it is not meant to model the

run-time behavior of the application components.175

An MACM model is a directed graph composed of several di↵erent types of

nodes. As mentioned before, in this paper we only consider application com-

ponents represented by custom software artifacts that have to be deployed on

VMs in order to o↵er the specific functionalities invoked as-a-service by the ap-

plication. This concept is modeled by means of the three fundamental MACM180

node types, represented by the SaaS services, corresponding to the application

components, the IaaS services, corresponding to the VMs, and the CSPs, which

model the providers o↵ering the VMs. The relationships among these entities

are represented as directed edges. In particular, three main relationships have

been devised:185

• A CSP provides compute IaaS services (i.e., VMs). This relationship is

represented by an edge directed from a CSP node to an IaaS service node

and labeled as “provides”;

• An IaaS service hosts an SaaS service. This relationship is represented by

an edge directed from an IaaS service node to an SaaS service node and190

labeled as “hosts”;

• Any service, either IaaS or SaaS, uses an SaaS service. This relationship

is represented by an edge directed from an IaaS/SaaS service node to an

SaaS service node and labeled as “uses”.

The high-level functional characteristics of each component have to be spec-195

8

DB

W

uses S uses

Figure 2: An example of deployment-independent MACM

ified by identifying its type (e.g., the component may be a custom web appli-

cation accessible via a network, a generic software-as-a-service provided by a

third party, or a storage service) and its performance requirements in terms of

resource demand (i.e., required amount of RAM and CPU). Similarly, it is nec-

essary to specify the VM characteristics in terms of the available storage and200

computation power. The component types, their performance requirements and

the VM features are modeled as properties, used to annotate the respective nodes

in the graph representation. Moreover, it is also possible to annotate links with

suitable properties that give additional information on the existing relationships

(e.g., a property may specify the protocol used on a communication link).205

Figure 2 shows the deployment-independent MACM model of a very simple

application. The model does not include IaaS service nodes or CSP nodes, but

only the service nodes representing the application components. The application

consists of a web application componentW (i.e., a software that o↵ers an HTTP

interface) that uses a mySQL database component DB, and a component S that210

o↵ers generic services in SaaS mode (e.g., a Map service).

3.2. Security Design

The goal of the Security Design phase is two-fold: On the one hand, (i) the

security policy implemented by each component of the application is assessed; on

the other, (ii) the security requirements of the application and of its components215

are identified.

As mentioned before, Security SLAs are adopted to model security policies

[4]. These are SLAs that explicitly include security-related terms and guaran-

tees. In particular, in Security SLAs the implemented security policies can be

specified in terms of the set of enforced security controls prescribed by one of the220

9

existing standard frameworks (such as the NIST Security Control Framework

[36] or the Cloud Security Alliance’s Cloud Control Matrix [14]). According

to NIST, a security controls is a safeguard or countermeasure prescribed for an

information system or an organization designed to protect the confidentiality,

integrity, and availability of its information and to meet a set of defined se-225

curity requirements. In this paper, we will adopt the NIST Security Control

Framework, which lists more than 900 security controls, organized in di↵erent

security domains ranging from access control (AC) to identification and authen-

tication (IA), to media (MP) and physical environment (PE) protection, and

includes also organizational aspects, as personnel training and planning.230

The identification of security requirements is carried out by means of a risk

analysis process that identifies for each component the main threats it is subject

to, based on its nature and on its interactions with other components, and

suggests the right countermeasures in terms of security controls to be applied

to mitigate such threats. Presenting the risk analysis process is out of the scope235

of this paper; the interested reader is referred to the paper [7] and to a MUSA

project demonstrator video available at [10] for further details.

The security assessment of a component, instead, aims at assessing the se-

curity controls it implements internally, and is carried out by means of ad-hoc

questionnaires. It is worth noting that, at this stage, such process does not240

take into account the possible impact that the deployment of components on

concrete cloud resources and the interactions among components and services

might have on the overall implemented security policies. Therefore, the re-

sulting security controls just represent the security policies that are virtually

implemented by components, and are used to build the components’ Security245

SLA Templates (SLATs). As will be widely discussed in the following, focusing

on the deployment optimization process, a further step will be needed to obtain

the actual components’ SLAs based on the specific selected deployment config-

uration, namely the SLA Composition process [42]. These SLAs will be then

used for the verification of the coverage of security requirements.250

An MACM model can be enriched so as to include security-related informa-

10

DB W
uses

S

uses

SLATDB

SLATS

SLATW

supports

supports supports

Figure 3: An example of security-annotated deployment-independent MACM

tion. In particular, the list of security controls resulting from the requirement

elicitation process can be added to every component in the MACM model as a

property of the corresponding node, in a way similar to the addition of node per-

formance requirements. O↵ered security policies, either virtually implemented255

(if deployment-related issues have not yet been taken into account) or actually

guaranteed, can be instead represented by means of two additional model node

types, namely the SLAT and SLA nodes, respectively. The relationships among

the MACM main node types (i.e., CSP, SaaS and IaaS) and the above two nodes

are the following:260

• Any service, either SaaS or IaaS, supports an SLAT. This relationship is

represented by an edge directed from an IaaS/SaaS service node to an

SLAT node and labeled as “supports”;

• Any service, either SaaS or IaaS, grants an SLA. This relationship is rep-

resented by an edge directed from an IaaS/SaaS service node to an SLA265

node and labeled as “grants”.

After the Security Design phase, the MACM of the application under devel-

opment will include information on the security requirements of the application

components with their SLATs. As an example, Figure 3 shows the security-

annotated version of the deployment-independent MACM in Figure 2. Clearly,270

since it is a deployment-independent representation, no actual services and

providers are involved yet, and no “grants” relationships are shown.

Later on, during the Optimal Deployment Identification phase, the model

of the application will be updated by adding deployment-specific information,

11

including the actual security policies implemented by each node involved in275

the deployment. This information will be used to assess the level of security

associated with a given deployment configuration and to verify the coverage of

existing security requirements.

Before going into the details of the optimization process, in the following

section we discuss the secure multi-cloud deployment problem, introducing a280

formalization that takes into account all involved inputs and constraints.

4. The Secure Multi-cloud Deployment Problem

The on-demand leasing model, which is a distinctive characteristic of cloud

environments, makes the deployment problem in clouds substantially di↵erent

from traditional resource allocation and scheduling problems, encountered in285

grids and other domains. These are usually modeled in terms of the generalized

assignment problem [27], where the number of available resources is essentially

pre-determined and fixed, and the goal is to minimize cost and/or maximize

performance or to find a trade-o↵ between the two criteria. Current cloud in-

frastructure providers, instead, typically o↵er several di↵erent types of VMs290

(often referred to as instance types), which are thought to fit specific cost/per-

formance requirements of customers. In the following, we will use the terms

“VM” and “instance” interchangeably, to indicate a virtual machine of some

type hosted in a cloud infrastructure.

Given an application made up of several interconnected software compo-295

nents, each component has to be deployed on one and only one instance. On

the other hand, an instance may in general host one or more components. The

deployment of a cloud application may involve the acquisition of multiple in-

stances of the same type, or even of a heterogeneous set of instances (i.e., VMs

of di↵erent types, possibly leased from multiple providers). In both cases, given300

the possibility to host multiple components on the same VM, the number of

instances (whether homogeneous or heterogeneous) is not a constraint of the

problem, and alternative deployment solutions characterized by di↵erent num-

12

bers of leased VM may be considered. Of course, traditional resource scheduling

models might still be adopted to describe the cloud deployment problem, but305

the resulting complexity would be intolerably high. As shown in the following, a

model tailored to the particular cloud features turns out to be more manageable.

4.1. Problem input parameters

Let us refer to the available instance types (possibly o↵ered by multiple

providers) with the term o↵erings, and let us use the term instance to identify310

the generic VM, belonging to one of these o↵erings, which is actually leased for

the application deployment.

The main inputs of the deployment problem are the application to be de-

ployed, whose architecture has been specified during the Functional Design

phase, and the cloud providers’ o↵erings, which we assume to be available from315

a public service catalogue. Let C = {c1, · · · , cn} be the set of the n software

components making up a cloud application and let O = {o1, · · · , om} be the set

of the m available o↵erings, each available in multiple instances (we will assume

for simplicity’s sake that the number of instances of any particular o↵ering is

unlimited).320

Components are heterogeneous, in that they have di↵erent requirements in

terms of performance and security. Similarly, every element of the set O is

a distinct instance type, characterized by unique cost, performance and secu-

rity features. Both the components’ requirements and the o↵erings’ features

are an input for the deployment problem. In particular, it is possible to iden-325

tify performance-related inputs, cost-related inputs and security-related inputs,

discussed in the following.

The performance-related inputs are represented by the amount of computa-

tion, storage, or communication resources provided by available o↵erings and

required by the application components, respectively. For simplicity’s sake, we330

will consider a generic type of resource in our formalization, represented by a

scalar quantity. Under this assumption, we can define the capacity cap(oj) of

an o↵ering oj 2 O as the maximum amount of resource that is available on the

13

instances of type oj . We assume that this information is specified in the service

catalogue, along with all the other relevant characteristics of available o↵erings.335

Similarly, we define the resource demand creq(ci) of a component ci 2 C as

the minimum amount of resource that the component needs for its execution.

Clearly, the resource demand of a component refers to the same resource type

considered for the definition of o↵erings’ capacity.

For what regards cost-related inputs, our model takes into account the cost340

associated with each o↵ering oj 2 O, referred to as cost(oj), and representing

the (hourly or monthly) unitary leasing cost of the instances of type oj (available

in a catalogue), specified by the developer at the beginning of the development

process.

The security-related inputs are the most critical ones. They include (i) the345

security requirements of each component, elicited during the Security Design

phase, and (ii) the security policies actually enforced by each component, which

depend on their deployment and can be identified only with the SLA Composi-

tion process. As it will be discussed in Section 5.2, this process relies upon the

components SLATs (obtained from the security assessment carried out in the350

Security Design phase), the SLAs associated with involved providers and related

to the specific o↵erings selected for deployment (obtained from a catalogue), and

the deployment configuration itself.

As said in Section 3.2, security attributes are modeled in terms of standard

security controls. Let SEC = {sec1, · · · , secs} be the set of the s reference355

security controls belonging to the NIST framework [33]. The security demand

of a component ci 2 C is represented by the subset RSEC(ci) ✓ SEC of

security controls that have been identified during the security design phase as

the countermeasures to be adopted in order to mitigate existing security risks for

the component ci. Similarly, the security provision of a component ci 2 C is360

represented by the subset PSEC(ci) ✓ SEC of security controls that have been

identified during the SLA Composition process as the actual security policies

implemented by component ci.

14

c1 c2 c3 c4

i1 i2 i3 i4

o1 o2 o3

c5

Figure 4: Example of deployment configuration

4.2. Problem output parameters

The output of the secure multi-cloud deployment problem is a physical cloud365

deployment configuration, which identifies how the components of an applica-

tion are distributed (i.e., mapped) onto the instances belonging to available

o↵erings. As previously pointed out, this is not a traditional assignment prob-

lem, since the number of assignment targets (i.e., instances) is not fixed, and

can be freely increased/decreased, as discussed above. As shown intuitively in370

the example depicted in Figure 4, in general a cloud application deployment

involves one or more instances (i1,. . . ,i4 in the figure), belonging to one or more

available o↵erings (o1,. . . ,o3 in the figure), where each instance hosts one or

more application components (c1,. . . ,c5 in the figure).

The deployment problem can be modeled as a double assignment problem,375

which links components to instances and instances to o↵erings.

Let us refer to the subset of components deployed on the same instance with

the term VM-set. Any partition of C into a set of non-empty and disjoint VM-

sets is a potential deployment configuration, which describes how components

may be distributed over di↵erent instances without taking into account the380

existing requirements and constraints. The ordering of components in a VM-

set and of VM-sets in a partition is unessential: for instance, the partition

depicted in the example in Figure 4, {{c1, c2}, {c3}, {c4}, {c5}}, is identical to

{{c3}, {c2, c1}, {c4}, {c5}}.

Let P = {p1, p2, . . . , pK} be a partition of C with cardinality K, referred to385

15

as a logical deployment, with the elements pk 2 P representing the associated

VM-sets. An alternative representation of P , which explicitly identifies the

mapping between each of the n components in C and the VM-set in P onto which

the component has to be deployed, is the COMPONENT-VMset mapping

vector L = [l1, l2, . . . , ln]. The i-th element of L is the index in P of the VM-set390

onto which the component ci is mapped. In formal terms, ci 2 ph) li = h,

with i 2 [1..n], h 2 [1..K] and ph 2 P .

Logical deployments only show how components are distributed over dif-

ferent VM-sets (i.e., over di↵erent instances). The mapping between the K

VM-sets involved in the logical deployment P and the corresponding concrete395

o↵erings belonging to the set of m o↵erings in O can be expressed through the

VMset-OFFERING mapping vector Q = [q1, . . . , qK]. The h-th element

of Q identifies the index in O of the o↵ering to which the h-th VM-set of P

belongs. More formally, ph 2 ow) qh = w, with h 2 [1..K]. w 2 [1..m] and

ow 2 O.400

In light of the above, a cloud physical deployment configuration D,

which is the output of the deployment problem, can be represented through the

pair < L,Q >, which describes how components are distributed over VM-sets,

and how VM-sets are assigned to o↵erings.

4.3. Problem constraints405

A deployment configuration is said to be valid if it fulfills both the functional

and non-functional requirements elicited during the design phases, which repre-

sent the constraints of the deployment problem, as discussed in the following.

• RC1. Coverage of resource demand requirements.

Let D =< L,Q > be a physical deployment configuration, with Q =410

{q1, q2, . . . , qK}, and let P = {p1, p2, . . . , pK} be the logical deployment

associated with D. Let O be the set of the m available o↵erings. For each

16

ph 2 P , it must be:

VMReq(ph)  cap(ok) (RC1)

where k = qh and ok 2 O.

The function VMReq(ph) returns the overall resource demand of the com-415

ponents allocated on the VM-set ph 2 P according to L: it must be lower

or equal to the capacity of the o↵ering associated with ph according to Q,

namely ok. Said Ch the set of components of C that have been assigned to

ph, and assuming that the amount of resource requested by components

is additive, VMReq(ph) can be computed as:420

VMReq(ph) =
X

c2Ch

creq(c) (1)

• RC2. Coverage of security requirements.

LetD be a physical deployment configuration and let PSEC(ci) be the set

of security controls actually implemented by component ci 2 C according

to the SLA Composition process carried out for D. Let RSEC(ci) be the

set of security controls that have been identified as security requirements425

for ci. For each ci 2 C, it must be:

PSEC(ci) ◆ RSEC(ci) (RC2)

The expression states that the security controls actually implemented by

component ci, according to the SLA Composition process, must include

those that have been identified as its security requirements.

5. Multi-cloud Security-aware Deployment Optimization430

The Optimal Deployment Identification phase aims at identifying a deploy-

ment configuration that is able to fulfill existing requirements in an optimal

17

way. It is worth pointing out that two di↵erent deployment configurations,

both able to satisfy the resource demand of the application components and

to cover the needed security controls, may have a very di↵erent impact, under435

several aspects, on the overall quality of the resulting deployment. For example,

their cost may considerably di↵er, or they may involve o↵erings of providers

with a highly di↵erent security level (based on their SLAs). In these cases, the

optimization process should be able to identify the solution that best suits the

requirements of the developer with respect to such criteria, possibly finding an440

optimal compromise based on an individual scale of preference.

The strategy implemented by the optimization process basically consists in

(i) identifying possible deployment solutions, (ii) computing, for each solution,

a score representative of its quality with respect to cost and security criteria,

and (iii) trying to optimize such score. More detailed, the optimization pro-445

cess carried out during the Optimal Deployment Identification phase is the one

sketched in Figure 5. It consists of four main steps:

Figure 5: The optimization process

1. Generation of a new deployment configuration. The first step of the pro-

cess entails the generation of a candidate deployment solution, expressed in

terms of the couple < L,Q > and specifying how components are mapped450

to o↵erings.

2. Verification of the validity of the generated configuration. The second

18

step of the process is devoted to verifying the validity of the generated

deployment configuration. As said in Section 4.3, a deployment is valid

when fulfills both resource demand and security requirements. While the455

maximum capacity of involved o↵erings is known a-priori, and thus the

verification of the performance requirements can be done immediately,

checking the coverage of security requirements of the candidate solution

requires the execution of the SLA Composition process. Therefore, for

each component of the application, the actual SLA is built based on the460

component’s SLAT, which is available as output of the Security Design

phase, on the information on the specific deployment configuration and on

the SLAs associated with involved providers. The resulting components’

SLAs are then compared with the security requirements specified for the

components during design, to check the security requirements coverage.465

3. Computation of the deployment score and update of the current optimal

solution. If the candidate solution turns out to be valid, its score is com-

puted as a combination of its cost and level of security, taking into account

the preferences expressed by the developer with respect to the relative im-

portance of such criteria. If the score of the new deployment is higher than470

the score of the best solution found so far, the current optimal solution

and the current best score are updated accordingly.

4. Verification of the termination condition. The optimization process ends

when a termination condition is encountered. This may be, for exam-

ple, one of the following: the maximum time predetermined for the opti-475

mization process has expired; all possible deployment solutions have been

checked; the current best score has exceeded a given threshold. Depending

on the termination condition used, the process will produce the optimal

or simply a sub-optimal solution.

In Section 5.1 and 5.2, we will provide an overview of the strategies adopted480

to generate new deployment solutions and of the outcome of the deployment

security assessment by means of the SLA Composition process, respectively.

19

In Section 5.3, instead, we will discuss the core of the optimization process,

namely the choice of the utility function and the computation of the score for

each deployment solution.485

5.1. Generation of deployment solutions

Several techniques can be adopted for the generation of candidate deploy-

ment solutions, including partial/total enumeration approaches and random

selection approaches. It must be noted that the number of possible deploy-

ment configurations is very high even for small-size problems involving few490

components and o↵erings, as the deployment optimization problem is NP-hard.

Clearly, the problem complexity can be reduced by adopting heuristic algo-

rithms able to find sub-optimal deployments in a pretty e�cient way; our im-

plementation, available at [9], also supports heuristic solutions based on genetic

algorithms. However, discussing the e�ciency of the chosen algorithm is out495

of the scope of this paper, which is focused on illustrating the security-driven

approach used in the optimization process.

For simplicity’s sake, in the following we will illustrate an algorithm that

derives directly from our formulation of the deployment problem, and that is

able to generate all the distinct deployment configurations < L,Q > of a multi-500

cloud application based on a combinatorial approach. The proposed deployment

configuration generation algorithm takes in input the deployment-independent

security-annotated MACM model of a multi-cloud application, and produces in

output an enriched model including the mapping of components onto o↵erings,

i.e., the deployment-specific security-annotated MACM1.505

The deployment configuration generation algorithm is a composition of two

combinatorial algorithms, namely the (i) Component-VMset mapping generation

algorithm and the (ii) VMset-O↵ering mapping generation algorithm.

1Considering the notation introduced in the previous section, this model allows to represent

in a graphical way a logical deployment, namely the mapping between components and the

instances that host such components.

20

The former algorithm takes in input the set of components C 2 and produces

in output all the possible mappings of components onto distinct instances, which510

can be represented in terms of the L vector, i.e., the COMPONENT-VMset

mapping vectors introduced in Section 4.2. In our implementation, the di↵erent

vectors L are generated one-by-one by the function nextL(), reported in Listing

2, which is invoked iteratively by the deployment generation algorithm. The

generation follows a specific order, starting from the configuration that maps515

all the components to a single VM-set, and ending with the configuration that

assigns each component to a di↵erent VM-set. The first COMPONENT-VMset

mapping vector is generated by the initialization function initL(), reported in

Listing 1, which initializes to 1 all the elements of L and of another vector, max,

which keeps status information and is used to avoid possible repetitions in the520

generation of the mappings.

The function nextL() takes in input the number of components to deploy

n, the current vector L and the current vector max and returns true if a new

vector has been successfully generated, or false if there are no other possible

partitions of C.525

2The set of components of a multi-cloud application can be obtained from the application

MACM model by retrieving all the nodes of SaaS type. Our implementation adopts a graph

database to maintain graph-based models and allows to get C in an automated way by means

of an SQL-like query.

21

Listing 1: Initialization of L

void initL(int L[], int max[],

int n) {

int L[n];

int max[n];

for(int i=0; i<n; ++i){

L[i]=1;

max[i]=1;

}

}

Listing 2: The Component-VMset genera-

tion Algorithm

bool nextL(int L[], int max[],

int n) {

int i=0;

++L[i];

while ((i<n-1)&&(L[i]>max[i

]+1)){

L[i]=1;

++i;

++L[i];

}

if (i==n-1)

return false;

int t=L[i];

for(i=i-1; i>=0; --i)

max[i]=t;

return true;

}

The VMset-O↵ering mapping generation algorithm takes in input a logical

deployment P and the set of o↵erings O and produces in output all the possible

mappings of VM-sets in P onto available o↵erings, which can be represented

in terms of the VMset-OFFERING mapping vectors Q, introduced in Section530

4.2. It is worth noting that, given K VM-sets and m o↵erings, the algorithm

simply generates all the possible K-element combinations (also referred to as

the K-combinations) of m values.

In our implementation, the di↵erent Q vectors are generated one-by-one

by the function nextQ() reported in Listing 4. The first VMset-OFFERING535

mapping vector Q, corresponding to assigning the same o↵ering o1 to all the

VM-sets, is generated by the function initQ(), reported in Listing 3.

The function nextQ() takes in input K, m, the current Q and the current

counter value, and generates a new vectorQ, returning true if a new combination

has been obtained, false otherwise.540

22

Listing 3: Initialization of Q

void initQ(int K, int Q[]) {

int Q[K];

for(int i=0;i<K;i++)

Q[i]=0;

}

Listing 4: The VMset-O↵ering Generation

Algorithm

bool nextQ(int K, int m, int*

counter , int Q[]) {

counter = counter +1;

int val = *counter;

int zeros = 0;

for(int i = 0; i < K; i++) {

Q[i] = val\%m;

zeros += Q[i];

val = (int) val/m;

}

if (zeros !=0)

return true;

else

return false;

}

The above functions are invoked by the deployment configuration generation

algorithm in order to generate all possible deployment configurations < L,Q >,

as illustrated in Listing 6. In particular, the function nextL() is invoked to

generate a COMPONENT-VMset mapping vector L, which is successively used545

to generate all possible VMset-OFFERING mappings by means of function

nextQ(). The procedure is iterated until no more vectors L are generated. The

function initDeployment(), reported in Listing 5, must be invoked prior to the

deployment generation in order to build the first vector L and start the whole

process.550

23

Listing 5: Initialization of deployment

generation

int initDeployment(int L[],

int Q[], int n, int max[],

int* counter) {

initL(L,max ,n);

initQ(1,Q);

*counter =0;

}

Listing 6: The VMset-O↵ering Generation

Algorithm

bool nextDeployment(int L[],

int max[], int Q[], int n,

int m, int* counter) {

bool ok=true;

if(! nextQ(getMaxValue(L), m,

&counter , Q)){

if(! nextL(L,max ,n))

return false;

else{

initQ(getMaxValue(L),Q);

return true;

}

}

return true;

}

5.2. Security assessment of deployment solutions

The security assessment carried out during the Security Design phase does

not take into account deployment-related issues, which may have e↵ect, in gen-

eral, on the actual security guarantees o↵ered by each component.555

Let us consider the two deployment-specific MACM models in Figure 6,

which represent two di↵erent deployment configurations for the simple applica-

tion reported in Figure 2, composed of a web app component W , a database

component DB and a component S o↵ering generic services in SaaS mode. The

model on the left represents a deployment where a single powerful VM o↵ered560

by a CSP hosts all the components, while in the second one a VM is used to host

S, and another VM o↵ered by a di↵erent CSP hosts W and DB. It is worth

noting that, although the components’ SLATs do not vary, the final security

policies implemented by the two deployments may be very di↵erent, depending

on the security controls granted by involved CSPs and on the way these controls565

are a↵ected by the deployment over multiple VMs.

The SLA Composition process combines the SLATs associated with each

component of the application with the SLAs of the CSPs that provide the host-

24

DB

W

uses
S uses

VM1

CSP1

hosts
hosts

hosts

provides

DB

W

uses
S uses

VM1

CSP1

hosts hosts hosts

provides

VM2

provides

CSP2

Deployment 1 Deployment 2

Figure 6: Alternative deployment configurations for a simple application

ing services, by applying composition rules to involved controls and control

families, according to the relationships existing among components and selected570

providers.

In particular, the SLA Composition process assumes that security controls

are independent of one another, and that their coverage can be verified sepa-

rately. Hence, the application graph model is translated into a set of logical

rules (first-order logic) that depend on how security controls are implemented575

on each node and that are suitably combined based on the graph structure. A

security control is considered as correctly implemented, and it is thus included

in the multi-cloud application SLA, only if it is implemented in all the services

composing the application. Explaining the details of the SLA Composition pro-

cess is out of the scope of this paper; the interested reader is referred to [42]580

for an extensive discussion about the composition techniques and rules. Figure

7 shows graphically the output expected from the SLA Composition process

for the deployment configuration in Figure 6. From the deployment-specific

security-annotated model, including the main relationships among nodes and

the static security policies implemented by each component (i.e., the SLATs),585

the composition process builds the final application MACM. This specifies which

are the actual security policies (i.e., the SLAs) that are enforced by each compo-

nent in the selected physical deployment configuration. These policies can then

be compared with the security requirements in order to verify their coverage (as

25

supports

DB

W

uses
S uses

VM

CSP

hosts
hosts

hosts

provides

SLAS SLAw SLADB

SLAVM

SLACSP
grants

grants

grants grants grants

DB

W

uses
S uses

VM

CSP

hosts
hosts

hosts

provides

SLATS SLATw
SLATDB

SLATVM

SLACSP grants

supports

supports supports

Figure 7: The SLA Composition Process

illustrated in Section 4.3).590

5.3. Computation of the deployment score

In order to identify the best compromise between cost and security, we de-

vised an optimization strategy able to take into account the preferences of the

developer with respect to these criteria. It is clear that, depending on the spe-

cific application under development, the absolute or relative importance of the595

above parameters may substantially change. Due to regulatory compliance, for

example, it may be essential to cover a certain set of security controls and to

rely on providers with specific security certifications, regardless of the price to

pay. In other cases, cost may be the primary aspect to consider when comparing

di↵erent solutions.600

Multiple criteria decision making is based on the formulation of mathemati-

cal optimization problems involving multiple objective functions to be optimized

simultaneously. It is very useful in real-world problems (belonging to engineer-

ing, economics and logistics fields, for example), where optimal decisions have

to be made in the presence of trade-o↵s between two or more conflicting ob-605

jectives. In the literature there exist several optimization strategies for solving

multi-objective problems [25, 41, 26]. Given the nature of the deployment prob-

lem and considering that the optimization has to be controlled by the developer,

26

we chose to adopt a multi-criteria decision strategy based on the flexible and

powerful Analytic Hierarchy Process (AHP) methodology [45].610

Indeed, the AHP o↵ers a simple way to automate the process of decision

making by taking into account di↵erent aspects of the possible solutions. The

AHP makes it possible to compare di↵erent alternatives according to quan-

titative or qualitative criteria, which are assigned di↵erent (relative) levels of

importance by the decision maker. Furthermore, the advantage of expressing615

the relative quality of a solution in terms of judgements (Low, Medium, High)

makes the AHP suitable for the security context, being very close to the way in

which security experts commonly describe and evaluate security levels.

The methodology entails the identification of a hierarchy, which in the sim-

plest case is composed of three levels: the root represents the goal, the intermedi-620

ate level includes the optimization criteria and the leaves represent the available

alternatives, among which a choice must be done. In our case, the goal can be

summarized as “choose the best deployment configuration for the application’s

components”, the criteria are represented by the overall security coverage and

the cost, and the leaves correspond to the possible deployment alternatives. The625

algorithm used by the AHP methodology assigns a weight or priority in [0,1] to

each node of the hierarchy. Priorities are assigned by performing pairwise com-

parisons among the nodes belonging to same level of the hierarchy with respect

to their impact on each of the parent nodes. Comparisons are then performed

(i) among the criteria with respect to the goal and (ii) among the alternatives630

with respect to each of the criteria. The priorities computed in this way are

properly combined by means of addition and multiplication operations to obtain

the final scores of the alternatives with respect to the final goal, which allows

to rank them from the best to the worst solution.

It should be noted that determining all possible deployment alternatives in635

order to directly apply the AHP methodology to the simple 3-level hierarchy

discussed above is not a viable solution, due to the complexity of deployment

generation. Hence, we considered a di↵erent hierarchy that includes deployment

clusters in its leaves instead of single deployments, as shown in Figure 8.

27

goal

cost cov

k11 k12 k13 k14 k21 k22 k41 k42 k43 k44
…

Figure 8: The AHP hierarchy used for deployment optimization

Although more complex strategies may be devised to build clusters, we con-640

sidered a simple strategy based on the use of four di↵erent percentage classes,

namely: CL1 = [0%; 25%), CL2 = [25%; 50%), CL3 = [50%; 75%) and

CL4 = [75%; 100%] representing the possible intervals in which both the cov-

erage and the cost values may fall. In particular, here coverage is measured in

terms of the number of security controls that a given deployment configuration645

is able to enforce over the total number of controls of interest (e.g., the controls

belonging to specific families). Alternatively, controls may be assigned di↵erent

weights, and coverage may take into account how controls are covered based

on their importance. In both cases, the information on the controls that are

actually enforced at the application level is provided as the result of the SLA650

Composition process. The cost, instead, is compared to the maximum possible

cost to be payed. This maximum cost is obtained by selecting the most ex-

pensive deployment that satisfies the performance requirements defined in the

functional design phase. Cost classes are built by considering cost in positive

terms, namely in terms of the percentage of money saved as compared to the655

maximum cost.

By combining the four classes, it is possible to obtain 16 clusters kij =<

COVi, COSTj >, with i, j = 1, . . . , 4, where COVi is the coverage class and

COSTj is the cost class.

Our optimization strategy works as follows:660

28

1. The above hierarchy is pre-evaluated in order to assign priorities to the

clusters with respect to their impact on the criteria, and to the criteria

with respect to their impact on the goal, based on the preference levels

expressed by the developer during the design phase. Let w(kij , COV) and

w(kij , COST) be the priorities computed for the cluster kij with respect to665

coverage and cost, respectively, and let w(COV, goal) and w(COST, goal)

be the priorities of coverage and cost with respect to the goal.

2. For each deployment solutionDn identified in the first step of the optimiza-

tion process, its (percentage) values of coverage and cost are computed.

As stated before, the coverage percentage is evaluated with respect to the670

controls of interest, while the cost percentage is computed with respect

to the maximum possible cost. Let them be COV (Dn) and COST (Dn),

respectively.

3. A weight vector Wn = [wn(COV), wn(COST)] is assigned to deployment

Dn, where wn(COV) = COV (Dn) and wn(COST) = 1 � COST (Dn).675

The value of wn(COST) represents the the amount of money that can be

saved with respect to the maximum cost when choosing the deployment

Dn.

4. The cluster to which Dn belongs is identified based on its coverage and

cost values. Let it be kij .680

wn(COV) 2 CLi ^ wn(COST) 2 CLj) Dn 2 kij (2)

5. The score of the deployment score(Dn) is computed as:

score(Dn) = wn(COV) · w(kij , COV) · w(COV, goal)+

wn(COST) · w(kij , COST) · w(COST, goal)
(3)

The pairwise comparisons needed to compute the priorities at step 1 of the above

process can be made in any sequence, but we considered first the evaluation of

the criteria with respect to the goal and then the evaluation of the alternatives

(clusters) with respect to the criteria. The scale used to carry out the com-685

29

parisons is the AHP fundamental scale reported in Table 1, which considers 5

di↵erent levels of relative importance.

Intensity of

importance

Definition Meaning

1 Equal importance Equal contribution to the objective

3 Moderate impor-

tance

Experience and judgement moderately favor one el-

ement over the other

5 Strong importance Experience and judgement strongly favor one ele-

ment over the other

7 Very strong im-

portance

One element is very strongly favored over the other,

its dominance is demonstrated in practice

9 Extreme impor-

tance

One element is extremely favored over the other, with

the highest possible evidence

Table 1: The scale for pairwise comparisons

The preference levels, set according to the values reported in Table 1, are

specified by the developer and used to fill a square symmetric diagonal matrix

(the Importance Matrix). Mathematically speaking, priorities are computed as690

the values in the matrix’s principal right eigenvector.

6. A Case Study

In the following, we will illustrate the main steps of the development process

discussed in Section 2 by means of a simple case study application. In particu-

lar, we will discuss the requirements elicited during the Functional and Security695

Design phases, and show the main steps behind the Optimal Deployment Iden-

tification phase.

6.1. Case study application design

Let us consider a simple cloud application that allows users to upload and

share personal documents through a web interface and to talk with one another700

thanks to a live chat service. The application is made of three components:

30

• Application Core. It is the web application that o↵ers the upload and

visualization functionalities to the users.

• Application Database. It is the database used by the application core to

store the users’ data.705

• Application Chat Service. It is a live chat service, o↵ered in SaaS mode,

used by the application core to provide its users with instant messaging

functionalities.

During the Functional Design phase, the developer first defines the high-level

architecture of the application by means of the deployment-independent MACM710

(the model of the case study application matches the one of the example ap-

plication in Figure 2, where the generic component S is substituted with the

Chat Service component), and then specifies the type of each component and

its performance requirements. The type of each component allows to identify

the security threats the component may be subject to, as resulting from avail-715

able vulnerability databases and assessment tools, and is used in the subsequent

Security Design phase. In this case study, web applications, storage services and

SaaS services represent three distinct component types, each characterized by

their own threat model and by a specific set of security guidelines to be applied

for risk mitigation.720

During the design phase, besides specifying the components’ types, the de-

veloper is also asked to provide a high-level characterization of the components

in terms of their resource demand (i.e., in terms of CPU cores and RAM ca-

pacity). Let us assume that the developer or an expert, after an analysis of the

expected workload, gives the following requirements for the given application:725

Component Requirements

Core CPU: 0.7 core; RAM: 512MB

Database CPU: 0.5 core; RAM: 2048MB

Chat Service CPU: 0.3 core; RAM: 1024MB

Table 2: Components’ resource demand

31

A value of ‘0.7 core’ in the table for the CPU means that the component

needs the 70% of the computation power of a single CPU core. The required

amount of CPU and RAM constitute the resource demand of each component,

generically identified as creq(ci) (cfr Section 4).

After the Functional Design phase, the Security Design phase takes place.730

Here, the developer has to (i) identify the application components’ security

requirements by carrying out a risk analysis process, and (ii) determine the

security policies virtually enforced by the components, based on their internal

implementation.

The elicitation of security requirements by means of the risk analysis pro-735

cess (named SLA Generation process) has been illustrated in [7], where we

also discussed its implementation through a suitable tool (the SLA Generator

application). As for the pre-deployment security assessment of components,

we prepared ad-hoc questionnaires based on public security guidelines, aimed

at identifying which security controls are actually taken into account by the740

components’ implementation. For conciseness’ sake, let us consider only the

controls belonging to the NIST families AC-Access Control and IA-Identity

Management, and let us assume that the security requirements identified for

the application components are those reported in Table 3, expressed in terms of

Required Controls, and that the Enforced Controls are those reported in Table745

4. These sets of controls respectively represent the RSEC(ci) and PSEC(ci)

inputs, as explained in Section 4.

Component Required Controls

Core AC-1, AC-6, AC-7, AC-9, AC-10, AC-11, AC-12, IA-1, IA-9

Database AC-1, AC-16, AC-17, AC-23

Chat Service AC-1, AC-2, AC-3, IA-1, IA-4, IA-5, IA-7

Table 3: Components’ security requirements

In the above described steps, part of the inputs needed by the Optimal

Deployment Identification phase have been identified. The remaining inputs

are those related to the available o↵erings, in terms of their capacity, cost and750

32

Component Enforced Controls

Core AC-1, AC-2, AC-3, AC-4, AC-5, AC-6, AC-7, AC-8, AC-9, AC-10,

AC-11, AC-12, AC-13, AC-14, AC-15, AC-19, AC-20, AC-21, AC-24,

AC-25, IA-1, IA-2, IA-4, IA-5, IA-6, IA-8, IA-9, IA-10, IA-11

Database AC-1, AC-2, AC-3, AC-4, AC-5, AC-6, AC-7, AC-9, AC-10, AC-11,

AC-12, AC-14, AC-15, AC-16, AC-17, AC-21, AC-22, AC-23, AC-24,

IA-1, IA-2, IA-4, IA-5, IA-6, IA-8, IA-9, IA-10

Chat Service AC-1, AC-2, AC-3, AC-4, AC-5, AC-6, AC-7, AC-9, AC-10, AC-11,

AC-12, AC-16, AC-17, AC-24, IA-1, IA-2, IA-3, IA-4, IA-5, IA-6, IA-7,

IA-9

Table 4: Components’ implemented security controls

security features.

O↵ering CSP Capacity Cost Security controls

o1 CSP1 1core,

1024MB

0,1 AC-1, AC-2, AC-5, AC-6, AC-7, AC-9, AC-10,

AC-11, AC-12, AC-13, AC-14, AC-21, AC-22,

AC-24, IA-1, IA-2, IA-4, IA-5, IA-6, IA-7, IA-

8, IA-9, IA-10, IA-11

o2 CSP1 2core,

2048MB

0,2 AC-1, AC-2, AC-3, AC-5, AC-6, AC-7, AC-9,

AC-10, AC-11, AC-12, AC-16, AC-17, AC-23,

IA-1, IA-2, IA-4, IA-5, IA-6, IA-7, IA-8, IA-9

o3 CSP2 2core,

4096MB

0,35 AC-1, AC-2, AC-6, AC-7, AC-9, AC-10, AC-11,

AC-13, AC-14, IA-1, IA-2, IA-4, IA-5, IA-6, IA-

7, IA-8, IA-9, IA-10, IA-11

o4 CSP3 1core,

1024MB

0,2 AC-1, AC-2, AC-5, AC-6, AC-7, AC-9, AC-10,

AC-11, AC-12, AC-13, AC-14, AC-21, AC-22,

AC-24, IA-1, IA-2, IA-4, IA-5, IA-6, IA-7, IA-

8, IA-9, IA-10, IA-11

o5 CSP3 2core,

4096MB

0,5 AC-1, AC-2, AC-3, AC-4, AC-5, AC-6, AC-7,

AC-8, AC-9, AC-10, AC-11, AC-12, AC-13, AC-

14, AC-15, AC-16, AC-17, AC-19, AC-20, AC-21,

AC-22, AC-23, AC-24, AC-25, IA-1, IA-2, IA-3,

IA-4, IA-5, IA-6, IA-7, IA-8, IA-9, IA-10, IA-11

Table 5: O↵erings

33

Let us consider the o↵erings reported in Table 5. For each o↵ering, the table

specifies the provider, the capacity (in terms of CPU cores and MB of RAM),

the hourly cost (in cents) and the enforced security controls.

6.2. Case study application deployment optimization755

The procedure shown above makes it possible to obtain all the inputs for

the Optimal Deployment Identification phase. As mentioned in Section 5.3, this

phase requires the pre-evaluation of the AHP hierarchy shown in Figure 8, so as

to compute all the relative priorities of the hierarchy nodes. These are needed

to compute the score of the candidate deployment solutions in the optimization760

process. To compute the node priorities, we first carry out pairwise comparisons

among criteria with respect to their impact on the goal, and then among clus-

ters with respect to their impact on the criteria, by using the scale reported in

Table 1. In this case study, let us assume that the developer considers security

essential, and so security coverage is very strongly favoured over cost. According765

to the AHP scale and recalling how the importance matrix is built, the Inten-

sity of Importance of coverage with respect to cost is 7, while the Intensity of

Importance of cost with respect to coverage is 1/7. With these values, it is easy

to verify that the coverage and cost priorities are w(COV, goal) = 0.875 and

w(COST, goal) = 0.125, respectively.770

For what regards the priorities of clusters with respect to their impact on

each of the criteria, we have built the importance matrix related to the pairwise

comparisons among the clusters with respect to coverage, by assigning the in-

tensity of importance based on the coverage class each cluster belongs to. This

way, clusters belonging to the same coverage class are considered equally impor-775

tant, while those belonging to di↵erent classes are assigned a relative importance

from moderate (level 3) to very strong (level 7). The importance matrix related

to the comparisons with respect to cost has been built in the same way. The

matrices are not reported here due to space limitations.

With the importance matrices set up, it is possible to compute the priorities780

of each cluster with respect to their impact on the considered criteria. These

34

are reported in Table 6.

kij w(kij ,COV) w(kij ,COST)

k11 0.014222 0.139473

k12 0.030468 0.139473

k13 0.065836 0.139473

k14 0.139473 0.139473

k21 0.014222 0.065836

k22 0.030468 0.065836

k23 0.065836 0.065836

k24 0.139473 0.065836

k31 0.014222 0.030468

k32 0.030468 0.030468

k33 0.065836 0.030468

k34 0.139473 0.030468

k41 0.014222 0.014222

k42 0.030468 0.014222

k43 0.065836 0.014222

k44 0.139473 0.014222

Table 6: Clusters’ priorities with respect to criteria

The above priorities are used to compute the score of each candidate de-

ployment. It should be noted that, with three components to deploy and five

available o↵erings, there are 205 possible deployment solutions. Although this785

number may seem relatively low from the point of view of the complexity of the

problem, it must be taken into account that, for each candidate deployment, a

validity check must be done before computing the score. The validity verification

includes a check of resource demand constraints, which is quite straightforward,

and a check of security constraints, which instead requires the execution of the790

SLA Composition process that is quite complex and time consuming. Indeed,

this operation would require too much e↵ort for a developer, if performed manu-

ally, and the adoption of the proposed approach enables to completely automate

the security check verification.

Returning to the case study, six solutions can be immediately discarded since795

35

they do not fulfill resource demand requirements. These include the solutions

that allocate all the components on the same instance, regardless of the involved

o↵ering, plus the solution < [1, 2, 2], [1, 1] >, which uses two instances of the

same o↵ering (o1) and deploys the Core component (c1) on the first one, and

the Database (c2) and the Chat Service (c3) together, on the second one, since800

this solution does not meet requirements on resource demand.

There are many solutions that fulfill resource demand requirements but do

not fulfill security requirements. Among them, as an example, let us consider

the candidate deployment < [1, 2, 2], [1, 3] >, which allocates c1 on an instance

belonging to o1, and c2 and c3 on an instance belonging to o3. When launching805

the SLA Composition process, it turns out that controls AC-16, AC-17 and

AC-23, required by the Chat Service component and implemented internally

according to the assessment reported in Table 4, would no longer be covered

with this deployment. In fact, these controls are not covered by o3, while the

adopted composition rules require their implementation both at component and810

VM level. Moreover, according to composition rules, a control of the AC family

can be considered as correctly implemented on a component c if it is correctly

implemented not only by c and by the o↵ering on which it is deployed, but also

by all the components used by c and on the respective o↵erings. This does not

happen for control AC-12, which is required by c1 but is not covered by o3,815

selected to deploy c2 and c3, which are used by c1.

The optimal deployment found is

D =< [1, 2, 2], [1, 2] >. This implies the deployment of c1 on an instance be-

longing to the o↵ering o1, and c2 and c3 on an another instance belonging to

o2. The solution is valid and has a cost equal to 0.3, which corresponds to the820

20% of the maximum possible cost (i.e., 1.5), obtained by deploying each com-

ponent on a separate instance of the most expensive o↵ering, namely o5. For

what regards coverage, we considered it respect to the AC control family, and

computed the percentage of controls of this family that result covered by each

deployment solution after composition. For the optimal solution D, the SLA825

Composition process outlined that 9 controls are covered out of the available 25

36

of the AC family. The coverage, therefore, results to be equal to 36%.

In conclusion, the just evaluated cost and coverage percentages are used to

assign the weight vector to the deployment D, represented by WD = [0.36, 0.8]

(cost is represented in positive terms as discussed in Section 5.3, i.e., 1-0.20).830

Such vector, in turn, allows to identify the coverage class (CL2) and the cost

class (CL4) to which the deployment belongs, and to determine the reference

cluster, which in this case is k2,4. Finally, by applying the formula (3) in Section

5.3, it is straightforward to compute the final score ofD, which is equal to 0.0505.

This simple case study has illustrated the main advantages of the proposed835

approach. First, in the design phase a completely automated way was proposed

to gather security requirements and match them with needed standard security

controls to apply and configure in order to mitigate potential security risks.

Second, the validity and feasibility of a possible deployment is automatically

performed with the adoption of the SLA composition process. Finally, an op-840

timal and feasible deployment can be identified and evaluated from a security

and cost perspective.

7. Related Work

One of the main contributions of this paper is the formalization of the de-

ployment problem. This problem has been widely addressed in the literature845

with approaches often borrowed from other contexts (e.g., task scheduling and

resource allocation in parallel and distributed systems). These approaches have

been previously adopted in cluster and grid computing, and later adapted to

clouds.

Applications running in the cloud are subject to many non-functional re-850

quirements, which typically are stated in an informal way. For example, the

choice among the configuration and deployment options can be influenced by

factors such as cost, performance, scalability, security, etc. These factors a↵ect

each other, making the optimization process very challenging. In this paper,

the focus is on a single non-functional requirement, security, which currently is855

37

still considered to be the biggest flaw of cloud environments. The paper [22]

is the literature contribution closest to our work. It presents a multi-criteria

optimization method (based on AHP, as ours) that relies on non-functional re-

quirements to select the best architectural options for deploying applications

in the cloud. However, the paper takes into account only e�ciency, cost and860

scalability as non-functional requirements, but security is neglected.

Other non-functional parameters linked to deployment choices are considered

in [48], whose focus is on the availability of applications deployed on clouds

that are characterized by relatively weak availability guarantees. The paper

[28], instead, deals with energy e�ciency. The authors propose to use power865

consumption as a metric to drive cross-cloud deployment in heterogeneous multi-

clouds.

As a matter of fact, most of the deployment/placement optimization studies

and algorithms in the literature consider a stable infrastructure, and so they are

not immediately exploitable in the cloud and multi-cloud context. Among the870

recent contributions that study the deployment problem in clouds, the paper

[32] tackles the problem of the optimum deployment taking into account the

data protection problems linked to the cloud inherent multi-tenancy. Reference

[24] presents a vision for an autonomic deployment system. In particular, it

details the architecture of a learning automata based reasoning component en-875

visioned to be able to provide feasible allocations of the artefacts on the available

infrastructures.

CloudOpt [29] is a comprehensive approach to find optimal deployments for

large service centres and clouds. It uses a combination of bin-packing, mixed in-

teger programming and performance models to make decisions a↵ecting diverse880

and interacting goals, including satisfaction of di↵erent service level agreements

for many di↵erent applications (e.g., response time, workload, throughput),

memory requirements and availability, costs and power consumption. It is scal-

able and extendible to new objectives. In [18], moreover, the authors initiate the

study of customer-controlled placement gaming, including strategies by which885

customers exploit performance heterogeneity to lower their costs. In particular,

38

they start from the assumption that not all VM instances are created equal:

Distinct underlying hardware di↵erences, contention, and other phenomena can

result in vastly di↵ering performance across supposedly equivalent instances.

They developed a formal model for placement strategies and evaluate potential890

strategies via simulation. In [43], the authors investigate a resource manage-

ment framework that consists of both architecture and scheduling policies with

regards to multi-tenancy issues, especially scalability and shared resources for

scheduling compute-intensive workflow applications. An interesting resource

management framework is developed to separate resource management policies895

from the control mechanisms required to implement them, introducing the con-

cept of Workflow-as-a-Service that can be used for any software components,

including security controls. The paper [39] deals with the prediction of the

cost of the cloud deployment of applications subject to performance-oriented

service-level agreements. Reference [50] introduces ClouDiA, a deployment ad-900

visor that minimizes either the latency or the longest critical path between

application nodes.

Papers more focused on the algorithms for optimization of the deployment

onto clouds include [16], which describes a toolchain that automates the as-

sembly and deployment of complex applications in the cloud. Given the set of905

available components together and their requirements, and the maximal amount

of virtual resources to be committed, it places components in an optimal manner

using the minimal number of available machines and automatically deploys the

complete system. Reference [15] presents a nature-inspired distributed heuristic

algorithm for deployment optimization. The algorithm is able to minimize ex-910

ecution or communication costs between the application software components.

The paper [30] deals with the optimization of the placement of VMs on phys-

ical compute nodes. This is a problem di↵erent from the one discussed in this

paper, where the objective is to optimize the deployment of software on VMs,

whose allocation of physical nodes is neglected. The use of genetic optimizations915

for the deployment and the possible reconfiguration of software in the cloud is

discussed in [20].

39

New work is recently appearing that takes into account the heterogeneity

and dynamism of o↵erings in a multi-cloud environment, as well as the spe-

cific cloud customers needs (costs, security, quality, etc.). The exploitation of920

the inherent infrastructure elasticity (i.e, the dynamical scaling up/down of the

number of deployed software components in order to adapt to the actual work-

load) is out of the scope of this paper. The approach proposed here is suitable

only applications with a fixed number of software components to be deployed. If

this number elastically changes, the optimization procedure has to be performed925

again. Among the papers tackling the elastic” deployment problem, it is worth

mentioning reference [17], which studies the deployment in light of the highly-

dynamical nature of the cloud. It presents a solution to leverage multi-cloud en-

vironments, rebalancing the workload by replacing instances in lower-preferred

clouds with instances in higher-preferred clouds. The objective of the paper [23]930

is instead the deployment of three-tier applications across multiple clouds. The

proposed resource provisioning and load distribution algorithms can heuristi-

cally optimize overall cost and response delays. The paper [49] introduces an

algorithm to minimize costs and latency of application deployment by exploiting

multi-cloud environments. Finally, in [31], the authors introduce a technique935

for application deployment in multi-cloud. It uses deployment configuration

tool (Chef [11]) to automate the deployment and a DSL language to model the

application and drive the deployment of the application. No optimization is ad-

dressed in this paper, but specific constraints from the multi-cloud environment

are analysed. Game-theoretic approaches for the optimization of the dynamic940

management of cloud/multi-cloud resources are presented in references [19] and

[1]. The search of the most trusted node for providing new resources and the

maximization of the perceived QoS in dynamical cloud infrastructures are dealt

with in [34] and [12], respectively.

Overall, none of the aforementioned studies takes into account the security945

level associated to the possible deployments. The approach focused on secu-

rity proposed in this paper tries to put together the most innovative results

from recent European projects and research activities, introducing a security-

40

driven process for the optimization of the deployment of software components

in a multi-cloud environment. As previously discussed, the whole process relies950

upon the adoption of Security SLAs as a means to express the security guaran-

tees o↵ered by services and applications, with these SLAs representing the glue

among the di↵erent process phases.

Providing and granting security features in cloud through Security SLAs is

a challenging task, as firstly outlined in [2, 3], where the authors discussed how955

cloud SLAs could be extended to cover security aspects, allowing composition

of cloud services from several service providers with a defined security level.

Recently, attempts to automatically manage Security SLAs have been devised

in a few European projects, such as Contrail [13], OPTIMIS [37], SPECS [8, 6]

and MUSA [44, 7], as described in [5].960

SPECS, in particular, proposed an easy-to-use Security SLA model that al-

lows to declare the security-related attributes of a service in terms of security

controls and to specify how to monitor them through proper security metrics.

The MUSA project, whose activities have inspired this paper, extended the

SPECS SLA model with the introduction of the SLA Composition process dis-965

cussed in [42], and the adoption of multi-cloud specific security controls and

metrics.

8. Conclusions and Future Work

In this paper, we have shown the high potential of multi-cloud strategies

for the development of secure and cost-e↵ective applications, and proposed a970

comprehensive approach able to support a developer in the design, development

and deployment of (multi-)cloud applications with specific performance and

security requirements. Our main contribution is the definition of a security-

by-design development process, in which security is taken into account from

the early stages of development and the deployment of applications is identified975

through an optimization process aimed at fulfilling the existing performance and

security constraints, while ensuring the best compromise between deployment

41

cost and overall level of security achieved.

The proposed process is very complex and some work is still to be done

to make it completely compliant with the current cloud landscape. First of980

all, we plan to improve the optimal deployment problem formalization in order

to take into account additional aspects of actual cloud environments. These

include the adoption of containers, and the mapping of components to SaaS

services. Moreover, more sophisticated performance and cost models and further

deployment models have to be considered.985

As mentioned several times in this paper, the proposed optimization strat-

egy is focused on small-size problems; however, the approach adopted remains

valid when di↵erent optimization algorithms are used. In the next future, we

plan to test new heuristic optimization algorithms in order to be able to manage

more complex problems. Finally, we are in the process of building a compre-990

hensive tool for the implementation of the whole development process, in order

to provide developers with a fully-automated solution.

References

[1] Ardagna, D., Ciavotta, M., & Passacantando, M. (2017). Generalized nash

equilibria for the service provisioning problem in multi-cloud systems. IEEE995

Transactions on Services Computing , 10 , 381–395.

[2] Bernsmed, K., Jaatun, M. G., Meland, P. H., & Undheim, A. (2011). Se-

curity SLAs for Federated Cloud Services. In Proc. of the 6th International

Conference on Availability, Reliability and Security (ARES) (pp. 202–209).

[3] Bernsmed, K., Jaatun, M. G., & Undheim, A. (2011). Security in Service1000

Level Agreements for Cloud Computing. In Proc. of the 1st International

Conference on Cloud Computing and Services Science (CLOSER) (pp. 636–

642).

[4] Casola, V., De Benedictis, A., Erascu, M., Modic, J., & Rak, M. (2017).

42

Automatically enforcing security SLAs in the cloud. IEEE Transactions on1005

Services Computing , 10 , 741–755.

[5] Casola, V., De Benedictis, A., & Rak, M. (2015). On the adoption of

security SLAs in the cloud. Lecture Notes in Computer Science, 8937 ,

45–62.

[6] Casola, V., De Benedictis, A., & Rak, M. (2015). Security monitoring in1010

the cloud: An SLA-based approach. In Proceedings - 10th International

Conference on Availability, Reliability and Security, ARES 2015 (pp. 749–

755).

[7] Casola, V., De Benedictis, A., Rak, M., & Rios, E. (2016). Security-by-

design in clouds: A security-SLA driven methodology to build secure cloud1015

applications. Procedia Computer Science, 97 , 53 – 62. 2nd International

Conference on Cloud Forward: From Distributed to Complete Computing.

[8] Casola, V., De Benedictis, A., Rak, M., & Villano, U. (2016). SLA-Based

Secure Cloud Application Development: The SPECS Framework. In Pro-

ceedings - 17th International Symposium on Symbolic and Numeric Algo-1020

rithms for Scientific Computing, SYNASC 2015 (pp. 337–344).

[9] CeRICT (2017). The deployment optimization tool - Bitbucket Repository.

URL: https://bitbucket.org/cerict/securitycontrolgraphs.

[10] CeRICT (2017). The SLA Generation application - Bitbucket Repository.

URL: https://bitbucket.org/cerict/sla-generator-v2.1025

[11] Chef Software Inc. (2018). Chef Web Site. https://www.chef.io/chef/.

[12] Comi, A., Fotia, L., Messina, F., Rosaci, D., & Sarné, G. M. (2016). A

partnership-based approach to improve qos on federated computing infras-

tructures. Information Sciences, 367 , 246–258.

[13] Contrail Consortium (2017). The Contrail project web site. URL: http:1030

//www.contrail-project.eu.

43

https://bitbucket.org/cerict/securitycontrolgraphs
https://bitbucket.org/cerict/sla-generator-v2
https://www.chef.io/chef/
http://www.contrail-project.eu
http://www.contrail-project.eu
http://www.contrail-project.eu

[14] CSA (2015). Cloud controls matrix v3.0.

https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/.

[15] Csorba, M. J., & Heegaard, P. E. (2010). Swarm intelligence heuristics for

component deployment. Lecture Notes in Computer Science, 6164 , 51–64.1035

[16] Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J.,

Eiche, A., & Agahi, A. (2014). Automated synthesis and deployment of

cloud applications. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering - ASE ’14 (pp. 211–222).

[17] Duplyakin, D., Marshall, P., Keahey, K., Tufo, H., & Alzabarah, A. (2013).1040

Rebalancing in a multi-cloud environment. In Proceedings of the 4th ACM

Workshop on Scientific Cloud Computing Science Cloud ’13 (pp. 21–28).

ACM.

[18] Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K. D., &

Swift, M. M. (2012). More for your money: Exploiting performance het-1045

erogeneity in public clouds. In Proceedings of the Third ACM Symposium

on Cloud Computing SoCC ’12 (pp. 20:1–20:14).

[19] Ficco, M., Esposito, C., Palmieri, F., & Castiglione, A. (2018). A coral-reefs

and Game Theory-based approach for optimizing elastic cloud resource

allocation. Future Generation Computer Systems , 78 , 343–352.1050

[20] Frey, S., Fittkau, F., & Hasselbring, W. (2013). Search-based genetic op-

timization for deployment and reconfiguration of software in the cloud. In

Proceedings of the 2013 International Conference on Software Engineering

ICSE ’13 (pp. 512–521). IEEE Press.

[21] Global Inter-Cloud Technology Forum (2010). Use Cases and Functional1055

Requirements for Inter-Cloud Computing. GICTF White Paper. http:

//www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf.

[22] Goncalves, R., Rolim, T., Sampaio, A., & Mendonca, N. C. (2015). A

multi-criteria approach for assessing cloud deployment options based on

44

http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf

non-functional requirements. In Proceedings of the ACM Symposium on1060

Applied Computing (pp. 1383–1389). volume 13-17-Apri.

[23] Grozev, N., & Buyya, R. (2014). Multi-Cloud Provisioning and Load Dis-

tribution for Three-Tier Applications. ACM Transactions on Autonomous

and Adaptive Systems , 9 , 1–21.

[24] Horn, G. (2013). A vision for a stochastic reasoner for autonomic cloud1065

deployment. In Proceedings of the Second Nordic Symposium on Cloud

Computing & Internet Technologies - NordiCloud ’13 (pp. 46–53). ACM

Press.

[25] Islam, M. R., & Habiba, M. (2012). Dynamic scheduling approach for data-

intensive cloud environment. In 2012 International Conference on Cloud1070

Computing Technologies, Applications and Management (ICCCTAM) (pp.

179–185).

[26] Jiao, L., Li, L., Shang, R., Liu, F., & Stolkin, R. (2013). A novel selection

evolutionary strategy for constrained optimization. Information Sciences,

239 , 122 – 141. doi:https://doi.org/10.1016/j.ins.2013.03.002.1075

[27] Kundakcioglu, O. E., & Alizamir, S. (2009). Generalized assignment prob-

lem. In C. A. Floudas, & P. M. Pardalos (Eds.), Encyclopedia of Optimiza-

tion (pp. 1153–1162). Boston, MA: Springer US.

[28] Kurpicz, M., Sobe, A., & Felber, P. (2014). Using power measurements as

a basis for workload placement in heterogeneous multi-cloud environments.1080

In Proceedings of the 2Nd International Workshop on CrossCloud Systems

CCB ’14 (pp. 6:1–6:6). ACM.

[29] Li, J. Z. W., Woodside, M., Chinneck, J., & Litoiu, M. (2011). CloudOpt:

Multi-goal optimization of application deployments across a cloud. In Net-

work and Service Management (CNSM), 2011 7th International Conference1085

on (pp. 1–9).

45

http://dx.doi.org/https://doi.org/10.1016/j.ins.2013.03.002

[30] López-Pires, F., Barán, B., Amarilla, A., Beńıtez, L., Ferreira, R., & Za-

limben, S. (2016). An experimental comparison of algorithms for virtual

machine placement considering many objectives. In Proceedings of the 9th

Latin America Networking Conference LANC ’16 (pp. 1–8). ACM.1090

[31] Lu, H., Shtern, M., Simmons, B., Smit, M., & Litoiu, M. (2013). Pattern-

based deployment service for next generation clouds. In 2013 IEEE Ninth

World Congress on Services (pp. 464–471).

[32] Mann, Z. A., & Metzger, A. (2017). Optimized cloud deployment of multi-

tenant software considering data protection concerns. In Proceedings of the1095

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing CCGrid ’17 (pp. 609–618). IEEE Press.

[33] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

NIST Special Publication, 800 , 145.

[34] Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., & Sarné, G. M.1100

(2016). A trust-aware, self-organizing system for large-scale federations of

utility computing infrastructures. Future Generation Computer Systems ,

56 , 77–94.

[35] MUSA Consortium (2015). The MUSA project web site. http://

musa-project.eu/.1105

[36] National Institute of Standards and Technology (2013). SP 800-53 Rev

4: Recommended Security and Privacy Controls for Federal Information

Systems and Organizations. Technical Report. URL: http://nvlpubs.

nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf.

[37] Optimis Consortium (2017). The Optimis project web site. URL: http:1110

//www.optimis-project.eu.

[38] PaaSage Consortium (2016). The CAMEL web site. http://camel-dsl.org/.

46

http://musa-project.eu/
http://musa-project.eu/
http://musa-project.eu/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://www.optimis-project.eu
http://www.optimis-project.eu
http://www.optimis-project.eu

[39] Perez-Palacin, D., Calinescu, R., & Merseguer, J. (2013). Log2cloud: Log-

based prediction of cost-performance trade-o↵s for cloud deployments. In

Proceedings of the 28th Annual ACM Symposium on Applied Computing1115

SAC ’13 (pp. 397–404). New York, NY, USA: ACM.

[40] Petcu, D. (2013). Multi-cloud: Expectations and current approaches. In

Proceedings of the 2013 International Workshop on Multi-cloud Applica-

tions and Federated Clouds MultiCloud ’13 (pp. 1–6). ACM.

[41] Qi, R., & Yen, G. G. (2017). Hybrid bi-objective portfolio optimization with1120

pre-selection strategy. Information Sciences, 417 , 401 – 419. doi:https:

//doi.org/10.1016/j.ins.2017.07.018.

[42] Rak, M. (2017). Security assurance of (multi-)cloud application with secu-

rity SLA composition. Lecture Notes in Computer Science, 10232 , 786–799.

[43] Rimal, B. P., & Maier, M. (2016). Workflow Scheduling in Multi-Tenant1125

Cloud Computing Environments. IEEE Transactions on Parallel and Dis-

tributed Systems, 9219 , 1–1.

[44] Rios, E., Iturbe, E., Orue-Echevarria, L., Rak, M., & Casola, V. (2015).

Towards self-protective multi-cloud applications: MUSA-a holistic frame-

work to support the security-intelligent lifecycle management of multi-cloud1130

applications. In CLOSER 2015 - 5th International Conference on Cloud

Computing and Services Science, Proceedings (pp. 551–558).

[45] Saaty, T. L. (1990). How to make a decision: The analytic hierarchy pro-

cess. European Journal of Operational Research, 48 , 9 – 26.

[46] SINTEF (2016). The CloudML Wiki web site.1135

https://github.com/SINTEF-9012/cloudml/wiki.

[47] SPECS Consortium (2013). The SPECS project web site. http://

specs-project.eu/.

47

http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.07.018
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.07.018
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.07.018
http://specs-project.eu/
http://specs-project.eu/
http://specs-project.eu/

[48] Xu, X., Lu, Q., Zhu, L., Li, Z., Sakr, S., Wada, H., & Webber, I. (2013).

Availability analysis for deployment of in-cloud applications. In Proceedings1140

of the 4th International ACM Sigsoft Symposium on Architecting Critical

Systems ISARCS ’13 (pp. 11–16). ACM.

[49] Yaw, S., Howard, E., Mumey, B., & Wittie, M. P. (2015). Cooperative

group provisioning with latency guarantees in multi-cloud deployments.

ACM SIGCOMM Computer Communication Review , 45 , 4–11.1145

[50] Zou, T., Le Bras, R., Salles, M. V., Demers, A., & Gehrke, J. (2015).

ClouDiA: a deployment advisor for public clouds. VLDB Journal , 24 ,

633–653.

48

	Introduction
	The Security-by-design Approach to Multi-cloud Application Development
	Design of a Multi-cloud Application
	Functional Design
	Security Design

	The Secure Multi-cloud Deployment Problem
	Problem input parameters
	Problem output parameters
	Problem constraints

	Multi-cloud Security-aware Deployment Optimization
	Generation of deployment solutions
	Security assessment of deployment solutions
	Computation of the deployment score

	A Case Study
	Case study application design
	Case study application deployment optimization

	Related Work
	Conclusions and Future Work

