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Abstract

Denial-of-Service (DoS) attacks are becoming increasingly common and
undermine the availability of commonly used web servers. Even if DoS at-
tacks cannot be rendered completely harmless, ready-to-use defense modules
and solutions to mitigate their e↵ect are highly beneficial for site adminis-
trators. Unfortunately, there is a lack of measurement studies that explore
the pros and cons of common DoS web server defense modules in order to
understand their limitations and to drive practitioners’ choices.

This paper presents an empirical study of the ubiquitous Apache web
server, with an assessment of two well-known pluggable defense modules and
an enlargement technique that provides the server with additional resources.
Measurements are based on a mixture of flooding and slow DoS attacks. The
experimentation shows that, in spite of the large availability of pluggable
security modules that can be usefully deployed in practice, there is not a
bulletproof defense solution to mitigate the DoS attacks in hand. The find-
ings of our analysis can be useful to support the deployment of proper defense
mechanisms, as well as the development of robust and e↵ective solutions for
DoS protection.
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1. Introduction

Denial-of-Service (DoS) attacks pose a relevant threat to commonly
used web servers. Although DoS attacks have been well-known for years –as
early as 1993 Needham pointed out that DoS are “incontrovertible” main4

threats (Needham, 1993)– variations and evolutions of DoS have spread over
time, making them dangerous, if not disruptive, even for modern networked
environments. Indeed, according to a recent report, attackers intensified their
DoS activity in the second half of 20201. The nature of a DoS attack retains8

its initial definition: denying a service. In this respect, attackers aim to hit
the victims by probing for weaknesses and trying out di↵erent attack vector
combinations. DoS attacks can be potentially harmful and unexpected for
any network infrastructure. This has led to the rapid spread of a variety of12

attack patterns that implement di↵erent malicious behaviors. In its most
classic form, during a DoS attack an attacker intentionally floods the victim
server by means of many service requests with the aim of slowing it down,
or even interrupting, its normal activity. In this context, the server is forced16

to allocate resources to process a multitude of requests, so that it fails to
provide service to legitimate users. In the last few years, DoS attacks evolved
into a “second” generation, called slow DoS attacks (Sikora et al., 2019).
These types of attack use low-bandwidth approaches that exploit application-20

layer vulnerabilities. Given the plethora of versatile and e�cient attack tools
available on the Internet, it is extremely simple to perform both flooding and
slow DoS attacks, and their setup takes place in a short time. Although the
perspective of the attacker community has broadened considerably, also that24

of the defender is potentially based on solutions that, at least in theory, aim
at providing a “bulletproof” environment.

Nowadays web servers are massively used by both organizations and
customers (Ferris and Farrell, 2003). This dependency has increased the load28

of web servers: accessing servers quickly, continuously, and accurately is the
main concern for developers and users. DoS attacks undermine this balance
by attempting to make web servers unavailable to clients. Notwithstanding
the substantial and valuable body of research on DoS defense, state-of-the-32

practice artifacts and techniques available to practitioners for hardening a
given web server are much more simplistic. In fact, well-known web servers,

1https://www.helpnetsecurity.com/2021/03/18/ddos-attacks-pandemic/
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such as the Apache2 web server, providemodules that extend the core server
functionality for special purposes. Many modules are recommended for hard-36

ening web server installations: they can be “plugged” into the web server in
order to achieve a layered defense strategy. We observe that “ready-to-use”
defense modules and solutions that can be used in practice by system ad-
ministrators do not seem particularly e↵ective against DoS attacks. While40

there are plenty of tech blogs and references that provide practical guidance
for installation and functional testing of defense modules, to the best of our
knowledge there is a lack of direct measurements to explore pros and cons
of common DoS defense modules.44

In this paper we propose an empirical study of well-established DoS
defense techniques in the context of the Apache web server. Our study is
based on direct measurements during a variety of DoS attacks against a vic-
tim server in a controlled testbed. Experiments capitalize on a balanced48

mixture of DoS attacks –emulated through well-established public tools–
that leverage both (i) flooding activities and (ii) slow attacks, which capi-
talize on the intrinsic design of the HyperText Transfer Protocol (HTTP).
Overall, the attacks elicit di↵erent outcomes by the web server depending52

on the specific defense in place. As for the defense, we consider evasive
and reqtimeout, i.e., two well-known Apache modules intended for DoS,
DDoS (distributed DoS) and brute-force attacks mitigation, and a resource
enlargement approach implemented by adjusting the configuration of the web56

server. It is worth noting that all the defenses have been tested against all
the attacks in hand in order to infer a coverage matrix aiming to provide a
clear picture on the limitations of the techniques assessed and in order to
drive practitioners’ choices.60

Our study is based on a holistic approach to measurement, where we
collect and look at metrics and data at di↵erent layers including application,
operating system and network. It is worth noting that assessing a given
defense technique is a complex matter and an open problem in the literature.64

As for any well-hardened system, there might be a strong-enough attack –
depending on the specific magnitude and duration– capable of subverting
a previously-proven valid defense. In consequence, finding a “meaningful”
metric that unifies alternative methods for defense evaluation is challenging.68

In this respect, we supplement traditional, client-side, service metrics with

2https://httpd.apache.org
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quantitative insights on the user-perceived availability and the e↵ectiveness
of the defense. More importantly, we dig into server-side access and error
logs, and CPU usage; where needed, additional insight is gained by analyzing72

the packets sent from the attacker to the victim server. Overall, the use of
di↵erent data sources beside the traditional metrics allowed us to gain a
deeper understanding on the specific defense technique. As a byproduct of
this work, we released a public dataset (Catillo et al., 2021a) encompassing76

network flow records collected in our controlled testbed; the dataset can be
accessed through our institutional webpage3.

The key outcomes and findings of our study, with respect to the attacks
and defenses in hand, are:80

• none of the defenses was truly e↵ective to provide “full” protection
from any of the attacks assessed in this study; rather, defenses either
(i) mitigated the attacks for a short timeframe (i.e., in the range of 1 to
2 minutes depending on the loss of service an administrator is willing84

to tolerate) or (ii) were able to recover the server only after a given
period of complete unavailability of the server;

• each defense technique mitigated only one out of the entire set of at-
tacks assessed in this study; for example, according to our findings,88

reqtimeout –partially e↵ective against a specific instance of slow DoS
attack– could be successfully subverted by relying on a di↵erent imple-
mentation of the same type of attack, while resource enlargement was
somewhat e↵ective only in the case of flooding attacks;92

• some of the attacks were mitigated by none of the defenses assessed
in this study, which means that in spite of the large availability of
security modules that can be usefully deployed in practice, there is not
a “bulletproof” defense solution against DoS attacks; more importantly,96

tech blogs lack a clear picture on the coverage practitioners can expect
from a given defense module once deployed in production.

The findings of this paper should be contextualized with respect to the
attacks and server in hand. Magnitude and duration of the DoS attacks is100

tuned in order to surely impact a baseline web server installation (i.e., default

3http://idsdata.ding.unisannio.it/
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configuration and no defense in place); then, attacks are executed –at the
same magnitude and duration– against the web server hardened through a
given defense technique. This is done to ensure the same attack conditions104

before and after defense. Di↵erent tuning of the attacks, i.e., weaker or
stronger, may reflect into di↵erent values of the evaluation metrics. The
findings of our study provide a better understanding of the capability of the
modules and their potential limitations in a production environment.108

The rest of this paper is organized as follows. Section 1 presents re-
lated work on DoS attacks measurement, detection and defense. Section
3 describes the controlled testbed, defense modules and evaluation metrics
adopted in this study. Section 4 describes the attacks, the experimental112

procedure and characterizes the attacks against the baseline server installa-
tion. Section 5 and 6 discuss the findings on the mitigation of flooding and
slow attacks, respectively. Section 7 summarizes lessons learnt, limitations
and threats to validity of our work, while Section 8 concludes the paper and116

provides future research directions.

2. Related Work

2.1. Denial of Services: measurements and detection

The escalation of DoS attacks has pushed security experts to work in order120

to face their e↵ects. Over the years DoS attacks have changed significantly
in both strength and intelligence. Therefore, a number of approaches have
been proposed to measure and detect DoS e�ciently.

In order to assess the impact of a DoS attack, its severity and the ef-124

fectiveness of a potential defense, precise, quantitative and comprehensive
metrics are required. In the literature, many solutions have been proposed
to evaluate the impact of DoS attacks. They aim to compare goodput (the
throughput of “useful” data) without attack, under attack, and with defense.128

Mostly often, percentage of failed transactions, Transmission Control Proto-
col (TCP) retransmission time out, goodput, mean time between failures
and average response time have been used as the key parameters for ana-
lyzing attack symptoms; however, there are no benchmarks (Mirkovic et al.,132

2006) that allow to evaluate e↵ective metrics. The authors of (Catillo et al.,
2021b) analyze DoS tra�c from di↵erent public intrusion detection datasets
and measure the impact under di↵erent configurations of a victim server.
Results indicate that a tuned-up configuration of the server can mitigate136
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the impact of a DoS attack; the authors also show the partial ine↵ective-
ness of the attacks in the presence of defense mechanisms and suitable server
configurations. The work (Mirkovic et al., 2007) proposes the use of the per-
centage of failed transactions (PFT) as a metric to measure DDoS impact.140

They define a threshold-based model, which is application specific. When
a measured value exceeds the threshold, it indicates poor quality of service.
Furthermore, since the transaction duration depends on the volume of data
being transferred and on network load, the absolute duration threshold can-144

not be set. Server timeout has been used as a metric in (Ko et al., 2006);
however, collateral damage in terms of legitimate tra�c drop is not disclosed.

DoS vulnerabilities are described in (Deng et al., 2019). In (Giralte et al.,
2013) the authors use three types of analyzers to detect DDoS attacks. They148

describe a normal user behavior in a statistical way and aggregate packets
with the same source address and protocol type. Flow count, flow size and
flow rate of the HTTP protocol are used to compute statistics for each user,
who is mapped to the source IP address. Any user with a statistical behavior152

di↵erent from the standard one is identified as suspicious. However, the
proposed technique is ine↵ective against distributed slow HTTP DoS attacks,
due to the lower amount of attack tra�c that allows it to evade detection.
(Aiello et al., 2014) describe a method that monitors the number of packets156

received by a web server in di↵erent time horizons for anomaly detection. If
the number of packets received in the interval exceeds a predefined threshold,
the interval is considered as containing attack tra�c. As for the detection of
slow DoS attacks, in (Sikora et al., 2019) is described a solution that analyzes,160

processes, and aggregates the data packets in order to dynamically detect the
anomalies. It is worth pointing out that although these techniques are often
e↵ective, monitoring the number of packets can cause high false positive
rates, because bursts of tra�c can be produced even in legitimate scenarios.164

In recent years, a substantial body of research deals with the detection
of DoS attacks using machine and deep learning techniques. Several
state-of-the-art anomaly detectors have spread in the literature, along with
more classic detection techniques. For example, in (Adi et al., 2017) is de-168

scribed a machine learning approach that aims to detect DoS attacks. A
machine-learning-based DoS detection system is presented in (de Lima Filho
et al., 2019), where the authors use an inference-based method, obtaining
a 96% detection rate. The work (Qu et al., 2019) proposes the statistic-172

enhanced directed batch growth self-organizing mapping (SE-DBGSOM), a
recent model based on self-organizing maps (SOM), for DoS attack detec-
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tion. The proposal is evaluated on the CICIDS2017 dataset. In order to
solve the challenges in DoS detection, Nguyen et al. (Nguyen et al., 2018)176

propose an intrusion detection system that leverages a convolutional neu-
ral network model; the authors evaluate the performance of the proposed
method using the UNSW-NB15 and NSL-KDD datasets. The results are
valuable as compared to the state-of-the-art DoS detection methods. Deep180

learning models are playing an increasingly important role and have become
a promising direction (Liu and Lang, 2019). For example, authors of (Catillo
et al., 2022) propose a method to detect di↵erent classes of anomalies in-
cluding DoS attacks. Detection is addressed by means of system log analysis184

and a semi-supervised deep autoencoder: the proposed approach, called Au-
toLog, achieves up to 99% recall and 98% precision across di↵erent system
logs and types of attacks.

2.2. Denial of Service: defenses and countermeasures188

Available defense mechanisms for DoS are surveyed in (Zargar et al.,
2013). They include defense mechanisms against network/transport-level
DoS flooding attacks or defense mechanisms against application-level DoS
flooding attacks, to mention some examples. Conventional defense approaches192

analyze the connection request rate for a particular client (Kang et al., 2015);
if this is determined to be above a pre-established threshold, the client is
marked as an attacker. However, the technique is ine↵ective for slow DoS,
as shown in (Aiello et al., 2014). As a matter of fact, whereas attacks at196

the communication layer typically require flooding the victim with a contin-
uous stream of packets, attacks at the application layer send relatively few
packets with suitable timing. Furthermore, in some cases, even a legitimate
user could generate multiple requests that are processing-intensive without200

leading to an attack (Nagaratna et al., 2009). The authors of (Beitollahi
and Deconinck, 2012) present a taxonomy of DoS/DDoS attacks and de-
fense mechanisms. In particular, the countermeasures against attacks are
broadly classified into proactive, reactive and survival mechanisms. Proactive204

mechanisms aim to detect an attack before it can hit the victim. Reactive
mechanisms detect and mitigate the attack after that the victim actually
encounters a DoS/DDoS attack. Survival mechanisms, instead, equipe the
possible victim system with resources that may be su�cient to serve legiti-208

mate users in case of attack. In (Aamir and Zaidi, 2013) an in-depth analysis
of DDoS countermeasures is provided. It focuses on strengths of each defense
technique and also considers the countermeasures that can be taken against
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each defense mechanism from the attacker’s point of view. In particular, the212

DDoS defense mechanisms are classified on the basis of the position of de-
fense (source-end, victim-end, distributed and core-end defense techniques),
and also on the basis of the reaction time (proactive, reactive and survival
techniques). A taxonomy of DDoS defense mechanisms can be found in216

(Chang, 2002). The authors state that, with respect to start-end of a DDoS,
there are three lines of defense against the attack: attack prevention and
preemption (before the attack), attack detection (during the attack), and
attack response (during and after the attack). As shown in (Gupta et al.,220

2012), defense at the Internet Service Provider level can be useful in case of
DDoS attacks originating from specific networks. In particular, the authors
provide two statistical metrics (tra�c volume and flow), which are used as
parameters to detect tra�c anomalies.224

The discussion of the work presented in Section 2.1 and 2.2 is supple-
mented by Table 1, which summarizes key aspects including datasets, main
contribution and category, i.e., measurements (M), detection (D) and coun-
termeasures (C). It is worth pointing out that –di↵erent from the discussion228

Table 1: Overview of the work presented in Section 2.1 and 2.2 by datasets, main contri-
bution and category, i.e., measurements (M), detection (D) and countermeasures (C).

paper dataset(s) main contribution M D C

(Chang, 2002) N/A Defense techniques (taxonomy) X
(Ko et al., 2006) lab-made attacks Server timeout evaluation X

(Mirkovic et al., 2006) lab-made attacks DoS benchmark suite X
(Mirkovic et al., 2007) lab-made attacks Application QoS requirements X
(Nagaratna et al., 2009) lab-made attacks Encryption and filtering X

(Beitollahi and Deconinck, 2012) N/A Defense techniques (review) X
(Gupta et al., 2012) lab-made attacks Combined statistical-based approach X

(Aamir and Zaidi, 2013) N/A Defense techniques (survey) X
(Zargar et al., 2013) N/A Defense techniques (survey) X
(Aiello et al., 2014) lab-made attacks Spectral features analysis X
(Kang et al., 2015) KDD’99 Real-time connection monitoring X
(Adi et al., 2017) Non-public data Näıve Bayes, decision tree, JRip, SVM X

(Nguyen et al., 2018) UNSW-NB15, NSL-KDD Convolutional neural network X
(de Lima Filho et al., 2019) CIC-DoS, CICIDS2017 Random forest X

CSE-CIC-IDS2018, Non-public data
(Deng et al., 2019) lab-made attacks DoSDefender architecture X

(Liu and Lang, 2019) N/A Machine learning (survey) X
(Qu et al., 2019) CICIDS2017 Artificial neural network X

(Sikora et al., 2019) lab-made attacks Packet monitoring X
(Catillo et al., 2021b) CICIDS2017, ISCXIDS2012, DoS tra�c replay X

NDSec-1, MILCOM2016, SUEE2017
(Catillo et al., 2022) Non-public data, HADOOP, BG/L Deep autoencoder X
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above– papers in Table 1 are arranged by year of publication and not by
category; the order of appearance of each paper in the table is di↵erent from
that observed in the text.

2.3. Our contribution232

Web servers are one of the most vulnerable services to DoS attacks in a
production environment. Moreover, the use of a default web server configura-
tion can open the way for attackers, and so it needs “hardening” techniques,
which should make it more complex to accomplish a successful attack. Beside236

regular updating and patching a given web server, it is essential to configure
it for better security performance. One of the key strengths of modern web
servers is their modular structure. This enables introducing additional mod-
ules that make it possible to build extensions to mitigate a number of security240

threats. In (Moustis and Kotzanikolaou, 2013) the authors implement cus-
tom web server modules at di↵erent layers of the communication protocols.
They limit the number of connections and monitor the connections per IP
address. A web server with such configuration can really mitigate an attack.244

However, if the attack is launched by an increasing number of bots, there is a
noticeable delay in the server response; as such, a massive attack scenario can
a↵ect the performance of the server. In (Hirakawa et al., 2016) the authors
propose and evaluate a defense method against distributed slow HTTP DoS248

attack by disconnecting the attack connections selectively and focusing on
the number of connections for each IP address and the duration time. The
defense solution is e↵ective against distributed slow HTTP DoS attacks.

Di↵erently from these papers, our empirical study aims to analyze252

“ready-to-use” solutions and modules that can be used in practice by system
administrators. Although the use of these modules is highly recommended,
studies on “real-life” defense modules are lacking. While there is a substan-
tial and valuable body of research on DoS defense –as for many of the papers256

referenced in Section 2.2– we take a di↵erent perspective by addressing the
gap between the sophistication of research proposals for DoS defense and the
oversimplification of the techniques that are concretely available to practi-
tioners. Through the analysis of two defense modules and a resource enlarge-260

ment technique, we provide a methodology that aims to holistically measure
the impact of di↵erent DoS attacks and the e↵ectiveness of the defense. The
result is a comprehensive analysis and a set of measurements, which outline
security facets and may drive the development of more resilient solutions for264
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DoS protection. To the best of our knowledge, there are no similar studies
in the literature.

3. Testbed, Defenses and Evaluation Metrics

Our analysis is based on direct performance measurements of a victim268

server during DoS attacks performed in a controlled testbed. We collect a
variety of service metrics to gain insight into the impact of the attacks in
case of no and with defense. In the following we describe the experimental
testbed, defenses assessed in this study and the service metrics adopted.272

3.1. Experimental testbed

Experiments are conducted with a private infrastructure hosted by a dat-
acenter at the University of Sannio. The experimental testbed capitalizes on
our previous work (Catillo et al., 2020) and consists of three Ubuntu 18.04276

LTS nodes, equipped with Intel Xeon E5-2650V2 8 cores (with multithread-
ing) 2.60 GHz CPU and 64 GB RAM within a local area network (LAN),
described in the following and using the naming shown in Figure 1.

attacker node

DoS
Tools

client node

httperf

victim node

www
server

benign HTTP
workload

logs

tcpdump

pcapDoS attack
workload

service
metrics

Figure 1: Experimental testbed.
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The “victim” node hosts an installation of Apache 2.4. This web server280

is a significant case study, given its widespread use. It can fit a wide-range
of websites, ranging from personal blogs to websites that serve millions of
users; moreover, it is open source and cross-platform. As discussed later,
the Apache web server supports a variety of pluggable modules –including284

security-related capabilities– that can be enabled by adjusting the configura-
tion of the baseline server installation. In our study we address the adoption
of the evasive and reqtimeout modules and a resource enlargement tech-
nique for defense purposes, as discussed in Section 3.2.288

As for the remaining components in Figure 1, the “attacker” node
generates the DoS tra�c intended to disrupt server operations. To this aim,
we use several state-of-the-art attack tools, which are described in Section 4.
Finally, the “client” node hosts httperf4, which is a widely-used workload292

generator. This tool makes it possible to set a desired level of workload by
regulating di↵erent parameters, such as total connections, connections per
second and requests per connection in order to trigger the normative HTTP
requests, which aim to emulate the benign workload by a legitimate client.296

During the experiments, the web server is exercised with both DoS tra�c
and benign workload. We use native metrics produced by httperf and a set
of derived metrics –detailed in Section 3.3 – to monitor the web server and
to measure the impact of an attack.300

3.2. Defense modules and techniques

The Apache web server is modular in design and many extensions may be
added to the baseline server to provide additional capabilities, in the form of
modules. Among the wide range of modules available through online reposi-304

tories5, it is possible to find a number of security modules. In particular,
in this work we deal with reqtimeout and evasive module. Nevertheless,
many additional modules are available to extend the core functionality of the
web server for special purposes.308

For example, the modsecurity2 module acts as a sort of intrusion de-
tection and prevention system (IDPS). Just like a regular signature-based
IDPS, it relies on a set of rules related to known attack patterns available
from free or pay-per-use repositories. These patterns may be used to check312

4https://github.com/httperf/httperf
5http://httpd.apache.org/docs-2.0/mod/
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di↵erent sections of an incoming request, according to the type of attack
and to the underlying protocol vulnerabilities they refer to. Similarly, the
fail2ban module also acts as an intrusion prevention tool. It detects various
attacks based on system logs and automatically initiates prevention actions.316

In particular, it performs periodic checks in the log files in order to search
for specific messages, e.g. repeated ssh access errors, and blocks the source
IP by creating a rule in iptables. The modqos, instead, is a quality of service
(QoS) module, which implements control mechanisms that can provide dif-320

ferent priority to di↵erent requests. It determines which requests should be
served primarily in order to avoid resource oversubscription. Specifically for
slow DoS attacks, on the other hand, are the modantiloris and modnoloris
modules. The former prevents new connections from the same IP address af-324

ter the connection count of the IP exceeds a configurable limit; the latter
is also based on modantiloris, but it runs an IP ban check on a (default)
10-second timer instead of on every request.

The use of security modules is not the unique way to set up a more328

“robust” Apache web server than the basic one. There are also concrete de-
fense techniques which simply consist in increasing the service resources (e.g.,
memory and sockets) that might be depleted under attack (Beitollahi and
Deconinck, 2012). This strategy –typically known as resource enlargement–332

may help the mitigation process, possibly allowing it to gain additional time
to face the attack. In the following we describe the defenses assessed in this
study.

3.2.1. reqtimeout module336

The module can protect from DoS attacks, such as slow attacks, and is
typically enabled by default in the baseline server after installation from the
standard Ubuntu repository. This means that its disablement requires ex-
plicit changes of the configuration by the user. The reqtimeout module is340

used to set –according to the environment and domain where the web server is
deployed– a time-out for client HTTP requests received by the Apache server.
In particular, since HTTP requests consist of header and body, reqtimeout
makes it possible to set di↵erent time limits for the two parts. Further-344

more, reqtimeout can be used to set the minimum allowed transfer rate for
data received from the client-side. If the client fails to meet the time frame
limit and the minimum transfer rate for sending the data, the connection is
dropped and the server responds with a 408 REQUEST TIMEOUT error.348

For our experiments we configured reqtimeout according to the instruc-
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<IfModule reqtimeout_module>
RequestReadTimeout header=20−40, minrate=500
RequestReadTimeout body=10, minrate=500

</IfModule>

Figure 2: reqtimeout configuration.

tions in the Apache docs6. Our configuration is shown in Figure 2. In par-
ticular, the first RequestReadTimeout directive gives the client a 20-second
maximum time frame for sending the first bytes of the HTTP request header.352

If the client has sent the first segment of the request, then the directive checks
the transfer rate to be at least 500 bytes/s. If the client does not send the
complete request in 20 seconds, the time-out is incremented by one second
for each received 500 bytes up to a maximum of 40 seconds. A similar rule356

is applied for the body portion of the HTTP request. In this case we omit
the upper time limit, thus setting a strict time limit of 10 seconds.

3.2.2. evasive module
This is a consolidated defense module intended to protect a server from360

DoS, DDoS and brute-force attacks. It is mainly conceived to mitigate those
attacks, such as hulk, that try to make a server unavailable by consuming its
resources through a huge amount of requests. The module stores all incoming
and previous IP addresses and Universal Resource Identifiers (URIs) in a364

table, which is used to lookup if a specific request should be allowed or not.
In particular, the module creates an internal and dynamic hash table of IP
addresses and URIs, and denies any single IP address that: (i) requests the
same page more than a few times within the past 1 second, (ii) makes more368

than 50 concurrent requests on the same Apache child process per second,
and (iii) makes any request while temporarily blacklisted. If any of the
above conditions is true, a 403 response is sent and the IP is blacklisted
for a configurable amount of time (10 seconds is the default value). The372

configuration of evasive relies on the following directives:

• DOSHashTableSize: specifies the size of the hash table. Increasing
the size will provide faster performance by decreasing the number of

6https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
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iterations required to get the record, but at the expense of consuming376

more memory;

• DOSPageCount: indicates the number of identical requests to a specific
page (or URI) a visitor can make over the DOSPageInterval (typically
one second). Once the threshold for that interval has been exceeded,380

the IP address of the client will be added to the blocking list.

• DOSSiteCount: specifies the total number of requests for any object
that is allowed to be made by the same client per DOSSiteInterval
(typically one second). Once the threshold has been exceeded, the IP384

address of the client will be added to the blocking list.

• DOSPageInterval: the interval during which the DOSPageCount thresh-
old has not been exceeded. The default value is one second.

• DOSSiteInterval: the interval during which the DOSSiteCount thresh-388

old has not been exceeded. The default value is 1 second.

• DOSBlockingPeriod: is the amount of time (in seconds) that a client
will be blocked if it is added to the blocking list. During this time
interval all requests from the blocked client will result in a 403 response392

from the web server. The timer is set to 10 seconds by default and it
is reset for every subsequent request.

The evasive configuration considered for our experiments is shown in
Figure 3. At any time, the module can be seamlessly enabled or disabled by396

acting on the configuration and re-starting the web server.

<IfModule mod_evasive>
DOSHashTableSize 3097
DOSPageCount 2
DOSSiteCount 50
DOSPageInterval 1
DOSSiteInterval 1
DOSBlockingPeriod 10

</IfModule>

Figure 3: evasive configuration.
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3.2.3. Resource enlargement
As mentioned above, resource enlargement aims to increase the ca-

pacity of the victim to serve requests. To this aim, we edited the default400

configuration of the web server in order to boost its capacity and multi-
threading capability. Apache extends his modular design to the most basic
functions of a web server, such as multi-processing. In particular, the server
is provided with a selection of Multi-Processing Modules (MPMs) which are404

responsible for binding to network ports on the machine, accepting requests,
and dispatching children to handle the requests. Currently, the Apache server
has three stable MPM modes: prefork, worker and event. They represent
the evolution and the development of Apache. Prefork MPM implements408

a non-threaded web server. It launches multiple Apache child processes.
Each Apache child process handles one connection at a time. The worker
mode, compared with the prefork one, uses a hybrid mode of multi-process
and multi-threading. It generates multiple Apache child processes similar412

to prefork. Each Apache child process runs many threads, and each thread
handles one connection at a time. Finally, the event MPM mode, introduced
in Apache 2.4, is pretty similar to worker MPM but it is designed for man-
aging high loads. It allows more requests to be served simultaneously by416

passing o↵ some processing work to supporting threads. The server can be
conveniently customized for the needs of the particular site. For example,
sites that need a great deal of scalability may prefer a threaded MPM like
worker or event, while sites requiring stability or compatibility with older420

software may adopt a prefork mode. In order to make the enlargement op-
eration in our testbed –in event mode– we considered the following Apache
MPM common directives:

• StartServers: number of child server processes created on startup;424

• MinSpareThreads: minimum number of idle threads to handle request
spikes;

• MaxSpareThreads: maximum number of idle threads to handle request
spikes;428

• ThreadLimit: sets the maximum configured value for ThreadsPerChild
for the lifetime of the Apache httpd process;

• ThreadsPerChild: number of threads created by each child process.
The child creates these threads at startup and never creates more;432
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Table 2: Configuration parameters of the web server.

directive default enlarged
configuration configuration

StartServers 2 4
MinSpareThreads 25 25
MaxSpareThreads 75 75

ThreadLimit 64 128
ThreadsPerChild 25 50

MaxRequestWorkers 150 200

• MaxRequestWorkers: sets the limit to the number of simultaneous re-
quests that will be served.

For our experiments we edited the default configuration of the Apache
web server in order to improve its capacity and multithreading capability.436

The result is an enlarged configuration, whose settings are shown in the
rightmost column of Table 2.

3.3. Evaluation metrics

DoS attacks and defense techniques are usually investigated by researchers440

and practitioners via live experiments in controlled environments. However,
even if the deployment of attacks and defenses is pretty straightforward, the
evaluation of a defensive solution is not a trivial task. In fact, finding a
uniform method for defense evaluation and a valuable mechanism to com-444

pare di↵erent defense techniques is challenging. In this context, it would be
beneficial to adopt a comprehensive and quantitative metric of distinction of
the defense. Even if the available literature on DoS presents several di↵erent
methods being used to assess defenses (Mirkovic et al., 2009), these o↵er lit-448

tle possibility of an objective and commensurable comparison. Many current
approaches to evaluate the quality of a defense technique involve the collec-
tion of well-known “legacy” metrics as throughput, request-response delay
or allocation of resources. Sometimes the metrics are based on a combina-452

tion of these legacy indexes. We adopt a holistic approach to measurement,
where we collect and look at metrics and data at di↵erent layers including
application, operating system and network.
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Legacy (traditional) metrics. These metrics are collected by running456

httperf at the “client” node, which is used to continuously probe the oper-
ational status of the server. While collecting the metrics, we set a request
timeout of 10 s to avoid that httperf could hang waiting for responses to
requests that might never be received in the case of attack. We focus on the460

following metrics obtained from httperf:

• reply rate or throughput (T): HTTP requests accomplished by the
server within the time unit, measured in reqs/s ;

• mean response time (MRT): mean time taken to serve an HTTP464

request measured in milliseconds (ms);

• successful and failed requests: number of HTTP requests success-
fully handled by the server (2xx response) and failed requests.

• connection errors: number of connection errors experienced by the468

client.

User-perceived availability and e↵ectiveness. It is worth pointing
out that DoS attacks may impact all network services, not only web servers.
The amount of degradation of quality of service (QoS) perceived by the user472

is heavily dependent on the application at hand. In the literature there exist
several attempts to define thresholds for common application QoS require-
ments (see for example (Mirkovic et al., 2007)). However, to consider the
e↵ect of DoS attacks at application level is out of the scope of this paper.476

In the following, we will limit ourselves to measure the impact of the at-
tack on web user experience by a lower-level index, the User-Perceived
Service Availability (UPA). The UPA is a low-level specialization to web
client-server interactions of the availability, known by various names in the480

literature (Mikic-Rakic et al., 2005), (Shao et al., 2009), and computed as the
ratio of the number of successfully completed inter-component interactions
in the system to the total number of attempted interactions over a period of
time. In our context, the UPA is defined as the number of HTTP requests484

that receive a 2xx response to the total number of HTTP requests issued to
the server. Though not linked to any particular user network application,
the UPA is a synthetic indicator of the decay of server performance due to
an attack. Furthermore, it paves the way to make considerations on the ef-488

fectiveness of a defense by evaluating its ability to maintain an acceptable
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level of availability under attack. In particular, we perform two tests with
the same timing and the same attack conditions, with and without defense.
We define e↵ectiveness the di↵erence between the times the availability falls492

for the first time under a given threshold level with and without defense, re-
spectively. In particular, in the experimentation that will be described next,
we will consider the following fractions of full UPA as thresholds: 0.9, 0.95,
0.99, which will be denoted for the sake of brevity 1 nine, 1.5 nines and 2496

nines, respectively.
Network-level and server-side data. In addition to the above men-

tioned indicators, which are measured at the client-side, in our experiments
we also collect information at network level and at the server-side. At net-500

work level, all the data packets transmitted on the testbed network are
stored and made available for later examination. At the server-side, in or-
der to highlight possible CPU resource depletion due to attacks, we measure
CPU usage at the server node by means of atop7, a well-known Linux504

performance monitor, which can log and report the activity of all server
processes. Furthermore, the logs of the web server (i.e., access.log and
error.log) produced during the experiments are stored in order to analyze
how the defense modules handle malicious requests.508

4. Attacks and Baseline Experiments

This section presents DoS attacks and related tools we used to conduct
the experiments; more importantly, we demonstrate the e↵ectiveness of each
attack against the baseline server installation, i.e., default configuration and512

“no defense” module in place, by measuring the UPA and additional user-
perceived metrics at the client node, such as the number of successful/failed
HTTP requests, reply time of the server and connection errors under attack.
The measurements presented in this section form the basis for assessing the516

e↵ectiveness of the defense techniques.

4.1. Attacks and tools

The experimental campaign is based on a mixture of DoS attacks, i.e.,
flooding and slow attacks. Each of the tools used for the experiments –520

described in the following– can potentially circumvent existing defense tech-
niques:

7https://linux.die.net/man/1/atop
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• hulk: it is conceived as a flooding attack aiming to overwhelm the
victim server by a massive amount of HTTP requests. Its strength is524

the ability to generate a unique HTTP GET request with randomly
generated headers and URL parameters. Thereby attack patterns can-
not be easily detected. The attack leverages di↵erent strategies, such
as the obfuscation of the source client. In this context the attack is528

accomplished by sending di↵erent patterns of attack requests that can
obfuscate the source client for each request. For our experiments we
use the grafov hulk Python script8. It is the most popular and well-
consolidated hulk implementation.532

• TCP flood: it is a popular DoS attack tool, which allows to conduct
a further form of flooding attack. The attacker sends TCP connection
requests in order to lock the ports available at the server and to cause
incapability to accept legitimate connections from benign clients. For536

our experiments we use a GitHub TCP flood script9. It is a Python
script that allows launching a TCP flood attack against the victim
host.

• slowhttptest: it allows implementing a slow rate and low volume of540

tra�c, which is di�cult to detect by standard DoS detection systems.
In particular, this kind of DoS attack uses low-bandwidth approaches,
which leverage a weakness in the management of TCP fragmentation
of the HTTP protocol: it requires HTTP messages to be completely544

received before they are processed. The slowhttptest tool10 allows
to generate slow DoS attacks. For our experiments we use it in the
“slowloris” mode, which allows sending incomplete HTTP requests to
the target server.548

• slowloris: it is a well-known Python attack script11 that allows im-
plementing low and slow DoS attacks. It implements a slow header
attack by sending incomplete HTTP requests (i.e., without ever ending
the header) and by establishing a number of connections to the target552

server. Connections are kept “alive” as long as possible by means of

8https://github.com/grafov/hulk
9https://github.com/Leeon123/TCP-UDP-Flood

10https://tools.kali.org/stress-testing/slowhttptest
11https://github.com/gkbrk/slowloris
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keep-alive headers on all the connections at 15 s intervals; if the server
closes a connection, this is restored by the script.

Selection of the attacks. Attacks are purposely chosen in order to556

cover in a comprehensive way existing DoS strategies aiming to consume all
the resources of a victim server (e.g., sockets and CPU time) by capitalizing
on network, transport and application layer protocol vulnerabilities. The
most common DoS family encompasses the attacks that try to spawn a large560

number of requests (the so-called flooding) so as to exhaust the server re-
sources, making it unable to serve legitimate requests: hulk and TCP flood
belong to this family, and are widely used as reference attacks in the litera-
ture. On the other hand, the so-called slow attacks leverage potential HTTP564

weaknesses by means of purposely-formatted messages, without generating a
large number of messages and consuming excessive bandwidth. We chose the
widely used slowhttptest and slowloris as representative of this second
category. It is worth noting that both slowhttptest and slowloris imple-568

ment slow attacks. We use both, because the results produced by the two
tools in case of defense –shown in the following– are di↵erent, thus allowing
more general claims. Another typical DoS attack is SYN flood, which cap-
italizes on a weakness of the TCP handshake. SYN flood is not considered572

in this study because modern operating systems, in particular Linux, use
the syn-cookie technique (Fontes et al., 2006) as a countermeasure: this is
typically applied as a default by the kernel, which makes the most part of
real-world servers protected by the attack with no need for any additional576

defense.

4.2. Execution of the attacks

Each attack tool presented above is launched against the baseline web
server while capturing metrics and data at di↵erent levels; it is worth noting580

that one attack per time is performed in the context of a single experiment.
Experimental procedure. The duration of an experiment is set to 600

s, a time interval which is long enough to collect a large sample of service met-
rics generated by httperf. The attack starts at t=15 s since the beginning of584

the experiment and the web server is exercised with a client load of L=1,000
req/s by httperf, a rate that can be safely handled at UPA=1.0 (i.e., no loss
of legitimate requests). In consequence, any point where UPA<1.0 points to
the presence of a DoS attack, because in our controlled testbed the only588

20



source of legitimate activity is the “client” node. At the end of each exper-
iment we (i) store measurement data and logs for subsequent analysis, (ii)
clear the logs of the web server, such as access.log and error.log (iii) stop
the workload generator, attack scripts and the web server. We reboot the592

nodes of the testbed to ensure independent experimental conditions prior to
the next experiment.

Figure 4 shows the UPA measured at the client node during the execution
of the attacks in hand. Attacks are run in case of “no defense” at the server-596

side; we will discuss the mitigation o↵ered by di↵erent defense techniques for
flooding and slow attacks in Section 5 and 6, respectively. Interestingly, the
attacks cause a variety of outcomes by the victim web server. For example,
we note either a progressive UPA degradation for hulk (Figure 4a) or periodic600

drops caused by TCP flood (Figure 4b). On the other hand, slow attacks
are characterized by the typical “on-o↵” behavior, as shown in Figure 4c and
4d, which means that UPA drops sharply from 1.0 to 0.0 in a few seconds.

Table 3 shows additional evaluation metrics collected at the client node;604

as the UPA above, metrics are collected with the default configuration and
“no defense” at the server-side. The total number of HTTP requests at-

(a) hulk (b) TCP flood

(c) slowhttptest (d) slowloris

Figure 4: Impact of each attack on the UPA during the “no defense” experiments.
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Table 3: Number of HTTP requests, MRT and connection (conn.) errors measured at the
client node while the server is under attack.

HTTP requests max conn.

succeeded (by MRT) failed MRT errors

[0, 1] ms (1, 10] ms (10, +1] ms (ms)
hulk 353,331 5,596 196 240,877 14.2 2,877

58.89% 0.93% 0.03% 40.15%
TCP flood 558,962 0 0 36,038 0.4 456

93.94% 0% 0% 6.06%
slowhttptest 3,979 0 0 296,021 0.8 2,962

1.33% 0% 0% 98.67%
slowloris 0 0 69 299,931 54.9 3,000

0% 0% 0.03% 99.97%

tempted by the client –while the server is under attack– is broken down by
succeeded and failed ; moreover, successful requests are further divided into608

three ranges based on the MRT taken to complete the requests. For example,
hulk causes the failure of 240,877 HTTP requests attempted by the client,
i.e., 40.15% of the total requests; on the other hand, 353,331 HTTP requests,
i.e., 58.89% of the total, succeed with MRT within [0, 1] ms. A similar find-612

ing is noted for TCP flood, where the requests that succeed, i.e., 93.94% of
the total requests, are accomplished within [0, 1] ms. With respect to our
experimental setting and duration of flooding attacks, HTTP requests either
succeed within a “reasonable” time or fail. As for slow attacks, almost all616

the HTTP requests attempted by the client fail, i.e., 98.67% and 99.97% for
slowhttptest and slowloris, respectively. Another interesting outcome is
noted for the number of connection (conn.) errors shown by the rightmost
column of Table 3: hulk causes almost the same number of connection er-620

rors of slow attacks, i.e., 2,877, but it is less e↵ective to make HTTP requests
fail. This finding is consistent with Figure 4, where it can be noted that hulk
takes around 600 s to make the server unavailable in our setting.

5. Mitigation of Flooding Attacks624

We start the analysis of flooding attacks by discussing the results ob-
tained by launching hulk and TCP flood after having hardened the web
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server either by means of evasive or by resource enlargement. Attacks are
run according to the experimental procedure presented in Section 4.2, with628

the addition that the server is hardened with a given defense technique be-
fore the beginning of the experiment. It is worth noting that reqtimeout
had no mitigation e↵ect against flooding attacks in the testbed in hand; in
consequence, reqtimeout will be addressed in Section 6, in the context of632

slow attacks.

5.1. E↵ectiveness of the evasive module

Figure 5a shows the UPA –“with defense” series– measured at the client
node during the hulk attack when the web server is defended by means of636

the evasive module. In order to appreciate the e↵ect of the mitigation, the
data series from Figure 4a is plotted again in Figure 5a, and indicated as
the “no defense” series. In both cases the attack starts at t=15 s after the
beginning of the experiment. Figure 5a shows that the “with defense” UPA640

is higher than “no defense”, which means the evasive module can mitigate
the hulk attack to some extent.

The detail is shown in Figure 5b, which presents the e↵ectiveness of the
evasive module at various UPA thresholds as ⇥-edged horizontal segments.644

Di↵erent from Figure 5a, UPA is “smoothed” by replacing each original UPA
value at time i since the beginning of the experiment (ui) with

u(i�1)+ui+u(i+1)

3 ,
i.e., the average of ui and its preceding/subsequent values in the series. This
is done to mitigate sporadic UPA fluctuations in order to obtain a better648

evaluation of the e↵ectiveness. Figures corresponding to each segment in
Figure 5b, i.e., length, start (tS) and finish (tF ) data points, are reported in
Table 4, where each row relates to a given segment.

(a) availability (b) e↵ectiveness

Figure 5: Impact of hulk on the UPA for no defense and with the evasive module.
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Table 4: E↵ectiveness of evasive against hulk.

UPA nines e↵ectiveness
length (start; finish)

0.99 2 70 s (tS=160 s ; tF=230 s)
0.95 1.5 80 s (tS=170 s ; tF=250 s)
0.90 1 110 s (tS=190 s ; tF=300 s)

As shown in Figure 5b, hulk takes around 160 s (tS) to make UPA less652

than 0.99 in case of “no defense”; on the other hand, hulk takes 230 s
(tF ) to make UPA=0.99 after the enablement of evasive. With respect to
the magnitude and duration of the attack, and server in hand, the evasive
module assures additional 70 s (i.e., tF -tS) UPA=0.99 (2 nines availability)656

when compared to its corresponding “no defense” experiment. Similarly, as
reported in the bottom row of Table 4, hulk takes around 190 and 300 s,
i.e., tS and tF , respectively, to make UPA less than 0.9 (1 nine availability)
in case of “no defense” and “with defense”: in consequence, e↵ectiveness is660

110 s.
The most striking outcome is that hulk takes much longer for impacting

the UPA when the defense is enabled; however, in spite of the user-perceived
mitigation e↵ect, the UPA remains strongly a↵ected anyway. Whilst the664

evasive module does not guarantee long-term protection from hulk, it can
contribute to saving a desired UPA level for an additional time that depends
on the magnitude of the attack and the network/server configuration.

5.2. E↵ectiveness of resource enlargement668

Resource enlargement is considered a viable means to mitigate DoS at-
tacks. Firstly, we assess this practice in the context of hulk. Figure 6 –“with
defense” series– shows the UPA measured at the client node during the hulk
attack when the web server is enlarged with respect to the default configu-672

ration; again, the data series from Figure 4a is reproduced in Figure 6a as
“no defense”. Similar to evasive, resource enlargement is able to mitigate
hulk to some extent: in fact, the UPA “with defense” is higher than the
corresponding “no defense” experiment. Regarding the e↵ectiveness, we ob-676

serve that resource enlargement can slightly improve the metrics obtained
with the evasive module, as it can be noted from the length of the ⇥-edged
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(a) availability (b) e↵ectiveness

Figure 6: Impact of hulk on the UPA for no defense and enlargement.

Table 5: E↵ectiveness of resource enlargement against hulk.

UPA nines e↵ectiveness
length (start; finish)

0.99 2 75 s (tS=160 s ; tF=235 s)
0.95 1.5 95 s (tS=170 s ; tF=265 s)
0.90 1 145 s (tS=190 s ; tF=335 s)

segments in Figure 6b and the corresponding numbers in Table 5, where each
row corresponds to one segment. For example, the e↵ectiveness of resource680

enlargement at UPA=0.99 (2 nines availability) is 75 s, which is 5 s more
than evasive; improvement with respect to evasive goes up to 35 s at
UPA=0.9 (1 nine availability). As noted for evasive, resource enlargement
does provide a mitigation e↵ect; however, it is not a long-term defense from684

DoS attacks.

5.3. Analysis of TCP flood

As for TCP flood, neither evasive nor enlargement were able to assure
any form of mitigation. Figure 7a and 7b –“with defense” series– show the688

UPA measured at the client node after evasive and enlargement, respec-
tively; in both the cases we reproduce Figure 4b as “no defense” for the
sake of better visual comparison. TCP flood is able to bring the UPA below
the 0.9 threshold regardless of the defense in place. This finding indicates692

that a flooding activity, which evades the simplistic threshold-based detection
scheme of evasive, can easily a↵ect the victim server.
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(a) no defense and evasive (b) no defense and enlargement

Figure 7: Impact of TCP flood on the UPA.

—– access.log —–
[ 01/ Aug /2020 : 22 : 44 : 31 +0200] ”GET /index . html ? ZBWRUMRX=ANINEAZY HTTP /1 .1”

200 11192 ”http : // engadget . search . aol . com/search ?q=PPQOBOV” ”Mozilla /4 .0
( compatible ; MSIE 8 . 0 ; Windows NT 6 . 1 ; WOW64 ; Trident / 4 . 0 ; SLCC2 ; . NET CLR
2 . 0 . 5 0 7 2 7 ; InfoPath . 2 ) ”

Figure 8: Response to a Hulk DoS HTTP request (no defense).

5.4. Server-side insights

Analysis is supplemented by a closer look at data and metrics collected696

at the server. We use the logs of the web server, i.e., access.log and
error.log, to gain a better insight into the UPA caused by hulk in “no
defense” and “with defense” conditions. As mentioned above, hulk floods
the server through malicious HTTP requests that consist of random URL700

query string, user agent and referee. Figure 8 shows an instance of hulk
request extracted from the access.log in a “no defense” experiment. Sur-
prisingly, with no specific defense in place, the server fulfills the malicious
request by returning the 200 (OK) HTTP status code (enclosed in a box in704

Figure 8), as for any legitimate request: this behavior causes a tremendous
waste of CPU at the server node.

Figure 9 shows the CPU usage at the server node during di↵erent exper-
iments. On average, the CPU usage measured when the server is exercised708

solely by the legitimate client workload, i.e., •-marked (no attack) series in
Figure 9, is around 11%; on the other hand, the average CPU usage is around
37% until 400 s –most of the duration of the attack– in case “no defense”,
i.e., M-marked series.712

The e↵ect of hardening the server by means of the evasive module is
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Figure 9: CPU usage measured at the server node during a legitimate experiment (no
attack) and di↵erent instances of hulk.

—– access.log —–
[ 01/ Aug /2020 : 22 : 27 : 50 +0200] ”GET /index . html ? TOIHJNNI=ZXGMI HTTP /1 .1”

403 459 ”http : // www . google . com /?q=QILIYIIDL” ”Mozilla /5 .0 ( X11 ; U ; Linux
x86_64 ; en−US ; rv : 1 . 9 . 1 . 3 ) Gecko /20090913 Firefox /3 . 5 . 3 ”

—– error.log —–
[ Sat Aug 01 22 : 27 : 50 . 377578 2020 ] [ evasive20 : error ] [ pid /∗ omitted ∗/ ]
[ client 192 . 1 6 8 . 1 1 1 . 6 5 : 5 4 508 ] client denied by server configuration :
/var/www/html/index . html , referer : http : // www . google . com /?q=QILIYIIDL

Figure 10: Response to a Hulk DoS HTTP request (with defense).

twofold. First, the way malicious requests are handled by the server. Figure
10 shows how a malicious HTTP request by hulk is tracked by the logs
of the server after enabling evasive. It can be noted that the malicious716

request is now forbidden access to the resource with the 403 HTTP status
code (enclosed in a box in Figure 10); moreover, it raises a corresponding
“client denied” notification in the error.log. Di↵erently from the absence
of defense, a malicious request is thus aborted, instead of being handled720

successfully; however, it still requires busy cycles from the server in order to
log the request and to “flag” it as forbidden. This can be noted in Figure 9,
�-marked series, which provides the server-side CPU usage caused by hulk
with the evasive module: on average, it is around 28%. Although lower724

than the “no defense” case mentioned above, i.e., 37%, the CPU usage is
significantly higher than the no attack series, which means that the overall
contribution of a massive flooding activity will eventually a↵ect the server
also in case of defense.728
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Another interesting outcome is noted for resource enlargement. It is clear
here that the “apparent” improvement of UPA and e↵ectiveness of resource
enlargement over evasive –documented in Section 5– is obtained at the cost
of a higher CPU usage. Figure 9, ⇤-marked series, provides the server-side732

CPU usage caused by hulk under resource enlargement : on average, it is
31%, in comparison to the above mentioned 28% of evasive. As a further
remark, in case of resource enlargement the server accomplishes all the HTTP
requests by hulk with the 200 (OK) status code, as in absence of defense,736

which indicates a bad handling of malicious requests.

6. Mitigation of Slow Attacks

The reqtimeout module is a default solution in the Apache web server
to face slow attacks. Figure 11a and 11b show the UPA at the client node740

under slowhttptest and slowloris, respectively. For each figure, the “no
defense” UPA series –originally presented in Section 4– is superimposed here
to that obtained after enabling reqtimeout, i.e., “with defense” series. It
can be noted that in case of “no defense” both the attacks have the same744

impact on the server. In fact, they cause the UPA to drop sharply from
1.0 to 0.0 (i.e., total unavailability) in just a few seconds. More importantly,
UPA remains stuck at 0.0 through all the remainder of the experiment, which
means the web server is clearly denied to legitimate clients.748

Di↵erently from the “no defense” case, the enablement of reqtimeout
leads to di↵erent outcomes depending on the specific attack, i.e., “with de-
fense” series in Figure 11. As for slowhttptest in Figure 11a, the UPA is

(a) slowhttptest (b) slowloris

Figure 11: Impact of slow attacks on the UPA for no defense and after defense by means
of the reqtimeout module.

28



restored to 1.0 at around t = 180 s : the server becomes available again to the752

client node. Overall, it seems that reqtimeout allows to successfully recover
from a slow attack if not for a transitory period of unavailability; however,
this is not a general finding for slow attacks. In fact, Figure 11b –obtained for
slowloris– provides a di↵erent picture: in spite of reqtimeout, the UPA is756

very unstable and it switches between sporadic spikes and very low values,
which means the server is mostly denied to legitimate clients.

In order to explore the limitations of reqtimeout, we investigate the low-
level behavior –in terms of transmitted packets– of the attacks in hand.760

To this aim, Figure 12 shows the number of SYN packets per second sent
from the attacker node to the server in “no defense” and “with defense”
experiments. It is worth noting that SYN packets are generated by a node
attempting to start a TCP connection. As for slowhttptest, the behavior764

of the attack is almost the same regardless of the defense, as shown by the
data series in Figure 12a. The attack generates up to 402 SYN packets per
second in “no defense” (359 packets per second in “with defense”) and keeps
going until t = 200 s. As shown above in Figure 11a, this is enough to768

bring down the server in “no defense”; however, the attack has a transitory
impact when reqtimeout is enabled. On the other hand, slowloris is able
to adjust its behavior depending on the absence/presence of the defense.
Figure 12b indicates that slowloris in “no defense” consists of a single772

burst of SYNs at t = 25 s ; di↵erent from this behavior, the same attack –once
enabled reqtimeout– generates periodic bursts of SYN packets in order to
keep subverting the defense successfully.

With respect to the magnitude and duration of the attacks in hand, it can776

(a) slowhttptest (b) slowloris

Figure 12: Number of SYN packets per second generated by each slow attack.
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be reasonably claimed that reqtimeout can defend from short slow attacks,
whose scope is quite limited in time; however, it is not e↵ective against
persistent slow attacks. In this respect, the usefulness of reqtimeout is
opaque, because it provides scarce, if not none, mitigation: even with the780

defense module on, a well-crafted slow attack is successful.

7. Lesson Learnt, Limitations and Threats to Validity

Table 6 summarizes the e↵ectiveness of each defense technique for each
attack assessed in this study. We mark by X all combinations where the at-784

tack is successful; the attack is deemed to be mitigated if the defense module
was beneficial, in that it led to reasonably higher UPA than the correspond-
ing “no defense” experiment. Table 6 indicates that two attacks –namely
TCP flood and slowloris– are mitigated by none of the defenses assessed788

in this study; more importantly, each defense technique is able to mitigate
just one of the attacks. Notwithstanding the substantial and valuable body
of research on DoS defense, “ready-to-use” solutions and modules that can be
used in practice by system administrators for hardening a given web server792

do not seem particularly e↵ective. For example, according to our findings,
reqtimeout can be successfully subverted depending on the specific imple-
mentation of the slow attack. The scientific literature has proposed and
proven a variety of sophisticated solutions; however, they do not seem to796

have yet converged into pluggable or “ready-to-use” artifacts. In fact, there
is a gap between the sophistication of research proposals for DoS defense
and the oversimplification of artifacts and techniques concretely available to
practitioners.800

Table 6: E↵ectiveness of each defense technique by attack (X indicates the attack is
successful; the attack is mitigated, otherwise).

defense technique
attack “no defense” evasive enlargement reqtimeout

hulk X mitigated mitigated X
TCP flood X X X X

slowhttptest X X X mitigated
slowloris X X X X
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Evaluating DoS defenses is a complex matter, and it depends on various
factors, such as the underlying network capacity and topology, the nature of
the attacks and the legitimate activity handled by the server under assess-
ment. The findings of this paper must be contextualized with respect to the804

attacks and server in hand. Magnitude and duration of the attacks is tuned
in order to surely a↵ect the availability of the server in case of “no defense”;
then, attacks are executed –at the same magnitude and duration– against
the web server hardened through a given defense technique. This is done to808

ensure the same attack conditions before and after defense; in fact, a di↵erent
tuning of the attacks, i.e., weaker or stronger, may reflect into di↵erent values
of the evaluation metrics. We are aware that we made some simplifications
in our study; however, the findings will reasonably hold in a more complex812

production environment of “real-life” servers, which reflects the ever-evolving
sophistication of the attacks, heterogeneous and non-stationary workloads.

As for any measurement study, there may be concerns regarding the va-
lidity and generalizability of the results. We discuss them based on the four816

aspects of validity listed in (Wohlin et al., 2000).
Construct validity. The study builds around the intuition that “ready-

to-use” modules and solutions for hardening a given web server provide lim-
ited defense from DoS attacks. This construct has been investigated in the820

context of a widely-used web server, three defense techniques and four attacks
implementing a mixture of flooding and slow activity. The study is supported
by extensive experimentation based on the analysis of consolidated metrics
and data collection at di↵erent levels, i.e., application, operating system and824

network level.
Internal validity. The results and key findings of this paper are based

on direct measurement experiments, where we analyze UPA, server-side logs
and CPU usage and network packets. Attacks have been simulated by means828

of widely-accepted tools in cyber security experimentation. For example,
hulk, slowhttptest and slowloris are used in many network-based public
intrusion datasets, such as the CIC collection. The use of such diverse data
and attack tools aims to mitigate internal validity threats.832

Conclusion validity. Conclusions have been inferred by assessing three
independent defense techniques and the sensitivity of a key metric, such as
the UPA, with respect to each attack. More importantly, we made sure
that each attack was successful in the baseline “no defense” experiment.836

We present an extensive discussion of the results. The key findings of the
study are consistent across the attacks, and this provides a reasonable level
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of confidence on the analysis.
External validity. The steps of our analysis can be applied to other840

web servers, DoS tools and defenses. Nowadays, there exist many software
repositories and plenty of attack tools, which make our approach definitively
feasible in practice. In fact, in this paper we successfully ported the exper-
iments across three defenses and four attacks to mitigate external validity844

threats. We are confident that the experimental details provided in the pa-
per –also pertaining to the configurations and defenses of the web server–
would support the replication of our study by future researchers and practi-
tioners.848

8. Conclusion

DoS attacks against modern web servers are becoming increasingly com-
mon. Even if DoS attacks cannot be rendered completely harmless, simple
and “ready-to-use” solutions to mitigate their e↵ect would be highly bene-852

ficial for site administrators. Unfortunately, our initial assessment indicates
that “ready-to-use” web server defense modules are partially un-e↵ective as
confirmed by our experiments and measurements.

In this paper, we presented our experimentation on the ubiquitous Apache856

web server and tested two well-known pluggable defense modules along with
an enlargement technique that tries to provide the server with additional
resources. Our results show that none of the modules is capable of reasonably
mitigating the e↵ect of all the DoS attack tools used in our tests, tools that860

can be easily found on the Inter and require no particular skill to be used;
moreover, some attacks cannot be mitigated at all.

Though limited to a single –albeit widely used– web server, our study
and the holistic measurement methodology adopted here pave the way to864

further investigation on the topic and, hopefully, to the development of more
robust and e↵ective tools for DoS protection that could be readily used by
system administrators. Besides the extension of our work to other web servers
(notably, ngix12), defense modules and attack tools, a further point to be868

explored in our future research is the quantification of the e↵ect of DoS
attacks on other network services than web servers. This will allow us to
evaluate the e↵ect of the on-going attacks perceived by network users in a
more complete way than as described in this paper.872

12https://www.nginx.com
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