
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.

SLA-based Secure Cloud Application Development:
the SPECS Framework

Valentina Casola, Alessandra De Benedictis
DIETI

University of Naples Federico II
Napoli, Italy

{casolav,alessandra.debenedictis}@unina.it

Massimiliano Rak
DIII

Second University of Naples
Aversa, Italy

massiliano.rak@unina2.it

Umberto Villano
DING

University of Sannio
Benevento, Italy

villano@unisannio.it

Abstract—The perception of lack of control over resources
deployed in the cloud may represent one of the critical factors
for an organization to decide to cloudify or not their own services.
Furthermore, in spite of the idea of offering security-as-a-service,
the development of secure cloud applications requires security
skills that can slow down the adoption of the cloud for non-
expert users. In the recent years, the concept of Security Service
Level Agreements (Security SLA) is assuming a key role in
the provisioning of cloud resources. This paper presents the
SPECS framework, which enables the development of secure
cloud applications covered by a Security SLA. The SPECS
framework offers APIs to manage the whole Security SLA life
cycle and provides all the functionalities needed to automatize the
enforcement of proper security mechanisms and to monitor user-
defined security features. The development process of SPECS
applications offering security-enhanced services is illustrated,
presenting as a real-world case study the provisioning of a secure
web server.

I. INTRODUCTION

Currently cloud security is considered one of the enabling
factors for the widespread adoption of the cloud computing
paradigm. Cloud computing relies on the idea of accessing
every kind of resource through an “as-a-service” interface, and
on the adoption of a pay-per-use business model. According
to such model, cloud resources are not permanently assigned
to users, and are not under the control of user software, but
they are just acquired on-demand. As a matter of fact, this
behavior is in contrast with the view of security as a vertical
layer, acting independently of the adopted software stacks and
provided with full control over all the resources involved in
service delivery.

Cloud Service Providers (CSPs), who are the owners of the
physical computing, storage and network resources, manage
huge datacenters where security is administered according to
common best-practice rules. They provide exactly the same
security features, which are simply the best they can offer, to
a variety of Cloud Service Customers (CSCs) with different
security requirements. As an example, consider the case of
a web developer that aims at building the web portal of a
publicly funded health-care system. Even if the design and
deployment of a portal is a technical task, the developer needs
to respect a set of security rules, related to the criticality
of data managed and to the public role of the health care
system. For example, the developer has to grant that data are
stored according to predefined policies to ensure integrity and
confidentiality. A CSP has no interest in offering a security

solution that grants such features to every CSC, due to the
high involved costs. Moreover, it is not able to differentiate
security features on a customer basis. As a result, the web
developer cannot simply turn to the cloud approach, and is
stimulated to consider alternative solutions.

The above example outlines the gap that exists between
CSCs, which look for security offered as-a-service, exactly
as any other cloud resource, and CSPs, which offer security
as-a-whole, integrated in the cloud services and transparently
granted in the same way for all customers. In such a context,
Security Service Level Agreements (SLAs) assume a key role,
as they allow, among other things, to declare clearly the
security level granted by providers to customers, as well as
the constraints posed to both parties (providers and customers).
Despite the strong interest recently shown in Security SLAs
in the context of both academical research and industry and
government-driven initiatives, their concrete adoption is not yet
a reality. In 2011, ENISA published a report analyzing the use
of security parameters in Cloud SLAs (mostly focused on the
EC public sector) [1], which pointed out that, although security
was considered by most respondents as a top concern, exist-
ing SLAs addressed only availability and other performance-
related parameters, while security-related parameters were not
included. Since then he situation has not changed, and Security
SLAs are still far from being adopted by existing CSPs.

The main goal of the on-going SPECS project1 is to foster
the adoption of Security SLAs by building a framework to
develop applications that deliver cloud services controlled by
Security SLAs. Every cloud service is covered by a Security
SLA that specifies the security grants offered, and that can be
negotiated before cloud service delivery. Security features are
automatically implemented by the SPECS framework accord-
ing to the agreed SLA, and can be continuously monitored to
verify that the SLA terms are actually respected.

The aim of this paper is illustrate the development of
a SPECS application. In Section II, we briefly introduce
the SPECS framework and in Section III its SLA model.
Section IV shows how a SPECS application looks like, while
Section V briefly illustrates the process to be followed for its
development. The methodology presented is applied in Section
VI, which gives insight into the development steps through a
case study. Finally, we present our conclusions and future work
in Section VIII.

1http://www.specs-project.eu

Fig. 1. Overview of the SPECS architecture

II. THE SPECS FRAMEWORK

The SPECS project aims at designing and implementing
a framework for the management of the whole Service Level
Agreement life cycle, intended to build applications (SPECS
applications) whose security features are stated in and granted
by a Security SLA [2], [3].

The SPECS framework provides techniques and tools for:
a) enabling user-centric negotiation of security parameters to
be included in a Security SLA; b) enforcing an agreed Security
SLA by automatically putting in place all security features
needed to meet user requirements; c) monitoring in real-time
the fulfillment of Security SLAs and notifying both users and
CSPs of possible violations; d) reacting and adapting in real-
time to fluctuations in the provided level of security (e.g., by
applying proper countermeasures in case of an SLA violation).

The following four main parties are involved in the SPECS
operation scenario:

• End-user, the customer of the cloud services covered
by Security SLAs;

• SPECS Owner, the provider of the cloud services
covered by Security SLAs;

• External CSP, an independent (typically public)
cloud service provider, which is unaware of the SLAs
and offers just basic cloud resources and infrastruc-
tural services;

• Developer, a cloud service partner that supports the
SPECS Owner in the development of SPECS applica-
tions and in the delivering of security-enhanced cloud
services.

The End-user negotiates his security requirements with the
SPECS Owner, who acts as a broker by acquiring resources
from External CSPs and by reconfiguring/enriching them in
order to fulfill the End-user’s requests. This is accomplished

by the activation and configuration of suitable security mech-
anisms, provided in an as-a-service mode by the Developer.
The security mechanisms are automatically enforced on top
of acquired resources, according to what has been agreed in
a Security SLA. In the above process, the security-enhanced
services are delivered to End-users by a SPECS application,
developed and deployed by exploiting the SPECS framework
services, and running on top of the SPECS Security Platform-
as-a-Service (SPECS PaaS).

In light of the above, the idea is to offer a framework that
enables to enrich easily an existing cloud service with Security
SLAs, by re-using a set of available security mechanisms and
by exploiting a set of services (Core services) devoted to the
management of the SLA life cycle.

As shown in Figure 1, a SPECS Application orchestrates
the SPECS Core services dedicated to Negotiation, Enforce-
ment and Monitoring, respectively, to provide the desired
service (referred to as “Target Service” in the picture) to the
SPECS Customer (i.e., to the End-user). The Core services
run on top of the SPECS Platform, which provides all the
functionalities related to the management of Security SLA life
cycle and needed to enable the communication among Core
modules. In addition to this functionalities, referred to as “SLA
Platform services”, the SPECS Platform also provides support
for developing, deploying, running and managing all SPECS
services and related components. These services are referred
to as “Enabling Platform services”.

In Figure 1, security-related SLOs are negotiated (Step
1) based on the SPECS Customer’s requirements. A set of
compliant offers, each representing a different supply chain
to be implemented, is identified with the help of an inter-
operability layer (represented by the SPECS SLA Platform
services), which is also responsible for their validation (e.g.,
to verify their actual feasibility based on the current system
configuration) (Step 2). Of course, given a set of security
requirements expressed by the SPECS Customer, multiple

Fig. 2. The SLA Life Cycle phases

supply chains may be identified, each characterized by its own
cost and associated security level. The resulting supply chains
may be ranked to help the SPECS Customer choose the desired
configuration. The agreed terms are included in a Security
SLA that is signed by the SPECS Customer and the SPECS
Owner (Step 3). Afterwards, the agreement is implemented
through the Enforcement services, which acquire resources
from external CSPs and activate suitable components that
provide, in an as-a-service fashion, the security capabilities
needed to fulfill the SLOs included in the signed Security
SLA (Steps 4 and 5). At the same time, suitable services
and agents are activated for monitoring the specific parameters
included in the Security SLA (Step 6). Monitoring data are
collected by the SPECS Monitoring module and analyzed
based on a monitoring policy: if an incoming or occurred
violation of the signed SLA is suspected, they are forwarded
to the Enforcement module, which performs a diagnosis. In
the case of an actual violation, suitable countermeasures may
be adopted, consisting in re-configuring the service being
delivered, or in applying remediation actions.

III. THE SECURITY SLA MODEL

As discussed in the previous section, the SPECS approach
for Security-as-a-Service provisioning relies upon the idea
that each cloud service is covered by a Security SLA, which
specifies security-related terms and conditions about delivered
services, and that the cloud service delivery can be controlled
according to the security features negotiated with the customer.
In order to manage such an approach, we proposed a Security
SLA life cycle, built according to current standards on cloud
SLAs (WS-Agreement [4], ISO19086 [5]). Our SLA life cycle
is made of five phases (Figure 2): Negotiation, Implementation,
Monitoring, Remediation and Renegotiation.

During the Negotiation phase, a cloud service customer and
a cloud service provider carry out a (possibly) iterative process
aimed at finding an agreement that defines their relationship as
regards the delivery of a service. During the Implementation,
the CSP provisions and operates the cloud service, but also sets
up the processes needed for the management and monitoring of
the cloud service, the report of possible failures and the claim
of remedies. After the implementation of an SLA, the Moni-
toring phase takes place. If any SLA violation occurs, i.e., if
one of the agreed terms of the SLA is not respected, the cloud
service customer may be entitled to a remedy (Remediation
phase). Remedies can take different forms, such as refunds on
charges, free services or other forms of compensation. Finally,
during the Monitoring and/or Remediation phases, either the
cloud service customer or the cloud service provider may
require a change in the SLA. This may lead to a Re-negotiation
phase, changing the original SLA terms. The interested readers
are referred to [6] for a deeper analysis of the SLA life cycle

and the description of REST API developed within the SPECS
project, and to [7] for an illustration of some of the tools used
in SPECS to monitor the SLA during the execution of a cloud
service.

The life cycle introduced above makes it possible to control
cloud services according to SLA phases (and states). However,
it is also necessary a conceptual model to represent security
concepts in the SLA. We developed a Security SLA model that
enables to clearly state security in cloud services, also taking
into account End-user requirements.

In addition to the information about involved parties and
provided services, a Security SLA must include security-
related guarantees. Unfortunately, despite the strong interest
in security and the existing efforts towards standardization,
a shared format for Security SLAs that includes the rep-
resentation of security attributes and security guarantees is
not available. Our machine-readable format relies on WS-
Agreement (WSAG) [4], born in the context of Grid com-
puting, which is currently the only standard supporting both
a formal representation of SLAs and a protocol for their
automation and has been recently widely adopted to represent
SLAs in cloud environments. In its original definition, WS-
Agreement does not allow to specify security-related attributes.
Hence, aiming at managing automatically the Security SLA
life cycle, we have introduced a Security SLA model and a
machine-readable format based on the WS-Agreement’s XML
schema and extended it with all security-related information.

A high-level view of the proposed SPECS Security SLA
model is represented in the UML diagram in Figure 3. In
the figure, we report the relationships among the SPECS
application, the Target Service, the SLA model and the other
main software components involved. As shown in the figure,
a SPECS application is linked to a Security SLA template,
which summarizes all the features that can be offered to End-
users through the application, under the guarantees stated in a
Security SLA. When the End-users negotiate security features
with a SPECS application, they basically select a subset of the
available features and obtain corresponding SLA Offers built
according to what can be actually delivered. Hence, an SLA
Offer can be seen as an instance of the set of possible SLAs
represented by a template.

A Security SLA is provided with basic information such as
the agreement name and context data (including the agreement
initiator and responder). The concrete description of the SLA is
made of service description terms, which describe
the offered service, and of service guarantee terms,
which describe the grants guaranteed in the form of Service
Level Objectives. Cloud and security-related information are
found in a dedicated security-based domain-specific service
term description, composed of the following three sec-
tions:

• Resources Provider: this section describes the
available infrastructure resource providers (id, name,
zone, and maximum number of allowed instances
reservations, if applicable) and the available appli-
ances (i.e., VMs) offered by each provider (type of
appliance, HW/SW features and description);

• Capabilities: this section describes the security

Fig. 3. The SPECS Security SLA model

capabilities2 offered/required on top of the services
covered by the agreement. Each capability is defined
as a set of security controls belonging to a Security
Control Framework, such as NIST’s Control Frame-
work [8] or Cloud Security Alliance’s Cloud Control
Matrix [9];

• Security Metrics: this section includes the
specification of the security metrics referenced in the
service properties section and used to define
Security Service Level Objectives (SLOs)3 in the
guarantee terms section. A metric specification
includes all information needed to identify it and to
correctly process the SLOs in which it is involved,
such as the metric name, its definition, its unit and
scale of measurement, and the expression used to
compute its value.

The association among security metrics and security
capabilities (more specifically, security controls) is made
through the Variable fields, which are used to define
measurable and exposed properties associated with a ser-
vice. Finally, guarantee terms include the conditions that
must be verified to fulfill the agreement. We adopted the
CustomServiceLevel item of the WSAG specification
to define our custom Security SLOs, identified by an SLO
id, a reference to the metric involved in the SLO, and the
related expression, along with a weight assigned by the service
customer and representing the related level of importance.

In Figure 3, the SPECS Platform components are colored

2Security capabilities are defined by NIST as combinations of mutually-
reinforcing security controls (i.e., safeguards and countermeasures) imple-
mented by technical means (i.e., functionalities in hardware, software, and
firmware), physical means (i.e., physical devices and protective measures),
and procedural means (i.e., procedures performed by individuals) [8].

3Security SLOs are conditions involving suitable security metrics, which
allow to measure the level of security being delivered with a service.

in green: the Security SLA life cycle is managed through the
SLA Manager, and a SPECS application can use the SLA
Manager APIs to store/retrieve/update Security SLAs.

The enforcement of security capabilities and the monitoring
of related security metrics (as specified in the SLOs) is per-
formed by software tools called Security Mechanisms:
they are selected, deployed and configured during the Im-
plementation phase. The Service Manager maintains all
the information associated with available security mechanisms
that are needed to automate their deployment and execution
together with the target services (i.e., mechanism metadata).
Finally, the Security Metric Catalogue maintains, in
machine-readable format, the information used for the defini-
tion of the security metrics. In our model, metrics are defined
according to the NIST RATAX framework [10].

IV. ANATOMY OF A SPECS APPLICATION

As introduced in the previous section, a SPECS application
is in charge of delivering cloud services according to SLA
life cycle. SPECS applications could be developed in two
different ways, namely (a) by simply reusing the public
interfaces offered by the SPECS Platform’s main modules
(SLA Platform, Negotiation, Enforcement and Monitoring), or
(b) by exploiting the tools offered by the SPECS framework
to build a custom SPECS application. This second option is
more interesting, and will be presented in the following.

The SPECS framework provides a default SPECS applica-
tion in the form of servlets for Apache Tomcat, which offers
to customers services that are orchestrated according to the
SLA phases. The default application is easily customizable, in
that it is independent of the actual services offered (both target
services and security services), which can be specified inside
a WS-Agreement-compliant template. In practice, the default
SPECS application can be used as a basis for straightforward
development of any application, since the only effort required

Fig. 4. The SPECS application use cases

from the developer is the provision of suitable metadata,
without any code development. This process is described in
the next section.

The implementation of the default SPECS application
automates the invocation of the SPECS Core services, by
offering to customers a dedicated page for each of the use
cases illustrated in Figure 4:

• the Negotiate SLA use case activates a Negotiation
wizard that builds up the Security SLA by identifying
the security capabilities, the security metrics and the
SLOs the End-user is interested in. When the process
ends, the End-user can sign the SLA, completing the
process.

• the Implement SLA use case starts up the SLA
Implementation process: the cloud service is delivered,
along with related security mechanisms, according to
the previously signed SLA.

• the Observe SLA use case refers to the implemented
SLA, and enables an End-user to monitor the agreed
SLA and to verify that it is respected.

The Negotiation process is based on the adoption of an
SLA template compliant with the format discussed in Section
III, which the default SPECS application retrieves from the
Negotiation module and uses to automate the full negotiation
process, up to the definition of a complete SLA. It should
be noted that the Negotiation module also offers the features
needed to guarantee that the SLOs offered in the SLA can be
actually implemented and granted (SLA validation). Once the
End-user signs the SLA, this is stored into the SLA Platform,
which will maintain its status. The default SPECS application
implements the interface between the End-user EU and the
SPECS platform. It performs the actual negotiation, in a way
similar to a wizard on the top of a WS-Agreement tem-
plate. Currently the Negotiation focuses only on the SPECS-
supported Security SLOs. However, it is possible to extend it
to other non-functional SLOs.

The Implementation process accepts as input a Security
SLA Offer, filled according to the template, and automatically
identifies the security mechanisms needed to grant the security
capabilities and the SLOs reported in the SLA. When the End-
user asks to implement a signed SLA, the SPECS application
automates the execution of the offered service, by acquiring
all the required cloud resources from an external CSP chosen

according to the SLA, and by deploying on top of them
all the security mechanisms able to implement the security
capabilities and to enforce the SLOs agreed in the SLA.
Also in this case, the process is completely automatic. The
SPECS application has just to invoke the implementation
REST API offered by the Enforcement module. Our default
SPECS application already offers all the required features:
both the cloud service offered to customers and the security
mechanisms adopted to grant security capabilities rely on Chef
deployment solution4. Chef automates the process of building,
deploying, and managing software over an ICT infrastructure.
It includes three main components: Chef Server, Chef Client
and Chef Workstation. The Chef server stores software in form
of cookbooks organized in recipes. The Chef client is installed
on cloud resources (virtual machine, container, or networking
device). SPECS periodically polls the Chef server for the latest
policy and state of the software infrastructure. If something on
the node is out of date, the client brings it up to date. The
last component, the Chef workstation, is simply the machine
that the system administrator uses to control the Chef Server.
Our SLA Implementation module acts as a Chef Workstation,
by automating the configuration process of the Chef server
(usually made by human operators) according to the Security
SLAs.

In order to enable the above-described automation process,
each mechanism is enriched with a metadata file, which reports
in detail all the information that SLA implementation will
use to automatically configure the mechanism itself. Moreover,
each mechanism declares the security capabilities that can be
granted over the target service and the metrics that can be
enforced/monitored. The description of the security mechanism
metadata is out of the scope of this paper.

Finally, the SPECS default application enables End-users
to continuously monitor the agreed SLAs (Observe SLA). To
this aim, it offers through a servlet an Observe web page that
summarizes the acquired resources and their status, reporting
the agreed metrics and their current values.

V. DEVELOPMENT PROCESS

As outlined in the previous section, the default SPECS ap-
plication automates the most part of the cloud service delivery
following the SLA life cycle. However, such automation must
be supported by the correct development and deployment of
the mechanisms able to grant the features agreed upon and
contained in the SLA.

Fig. 5. SPECS application development process

Figure 5 summarizes the four main steps for the develop-
ment of a new SPECS application:

• Cloud Service Definition: during this phase, the
developer builds the cloud services to be delivered

4https://www.chef.io/chef/

through the SPECS application (e.g., web servers,
storage services) and prepares the related cookbooks.

• Security Mechanisms Definition: during this phase,
the developer prepares (or selects among those already
available) the security mechanisms to offer on top of
the cloud services defined at previous step. Each se-
curity mechanism comes with its cookbook, declaring
the granted security capabilities (and related security
controls) and the enforced/monitored security met-
rics, and with its metadata, which include all related
recipes (i.e., the software components implementing
the mechanism) and deployment constraints (e.g., in-
compatibility or dependency of software components
implementing the mechanism).
Security mechanisms can be specific for the service
to be offered or generic ones. In this case, they are
simply applied to the cloud resource involved (as
an example, vulnerability assessment for the virtual
machines acquired).

• Preparation and deployment of the Security SLA
template: once the security mechanisms needed for
the target cloud service have been defined, the de-
veloper has to compile a WS-Agreement-compliant
template, which summarizes the possible features that
can be offered to End-users, and has to make it
available in the Negotiation module.

• Deployment of Security Mechanisms: the last de-
velopment step is the deployment of the security
mechanisms to make them available to the SPECS
application. All the cookbooks must be registered with
the Chef server, in order to enable the enforcement
module to implement the SLA. The metadata of
mechanisms must be registered in the SLA Platform
in order to enable the SPECS application to retrieve
the information and to implement the SLA.

It is worth noting that the SPECS application development
mainly focuses on the development of ad-hoc Chef cookbooks
for the security mechanisms to be offered. When cookbooks
are already available (there are many archives of already-
developed cookbooks), the only additional work consists in
the preparation of the metadata and SLA templates used to
automate the SLA implementation.

VI. THE WEB CONTAINER EXAMPLE

In order to illustrate better the process of developing a
SPECS application, in this section we focus on a simple
example related to the acquisition by a web developer (the
End-user, EU) of a web container enriched with a set of
security features. It is reasonable to suppose that the EU is
not a security expert, in that he is aware of the technologies
that may be involved (SSL, authentication and authorization
protocols, etc.), but has no cognition of the best practices and
of how to protect his application from malicious attacks. For
this reason, the acquisition of VMs hosting the web container
and the enforcement of security features are accomplished
through SPECS.

It should be noted that, at the state of the art, even if the
web developer acquires VMs from a public CSP, he is the

only person in charge of setting up any security configuration.
Existing appliances offer predefined services (for example, a
pre-configured web server), but checking and comparing the
security features offered by different CSPs is not an easy
task. The web developer has to (i) manually find the security
features provided by each CSP, (ii) evaluate and compare
existing offers, (iii) apply a suitable configuration, if not
natively supported, and (iv) implement a monitoring solution
to verify at runtime the respect of the security features.

The SPECS ecosystem provides a turnkey solution to the
above issues, as it (i) offers a single interface to choose among
multiple offerings on multiple providers, (ii) enables the web
developer to specify explicitly the needed security capabilities
on the target web container, (iii) automatically configures the
VMs in order to enforce the security controls requested, (iv)
offers a set of security metrics to monitor the respect of the
security features requested, (v) enables continuous monitoring
of the security metrics negotiated, and (vi) can automatically
remediate to (some of the) alerts and violations that may occur
to the SLA associated to the web container.

Below we will present the development of the Web con-
tainer as a SPECS application, following the steps dealt with
in the previous section.

Cloud Service Definition: The main goal of our case study
SPECS application is to deliver web servers, pre-configured ac-
cording to security best practices. To this aim, we developed a
mechanism named WebContainerPool devoted to automatically
deploying and configuring a pool of web servers over a set
of virtual machines acquired from an external CSP (Amazon
in our implementation). The developed mechanism not only
provides the web server cloud service, but it also offers some
reliability features, measured in terms of the two metrics (i)
LevelofRedundancy and (ii) LevelofDiversity. The
former ensures resiliency to failures through replication of the
web container instances (used transparently by the End-user),
while the latter ensures resiliency to vulnerability-based attacks
by employing different software and/or hardware instances of
the same web container.

In practice, the WebContainerPool mechanism has been
developed as a security mechanism, and includes a set of
pre-configured web servers (at the state of the art, Apache
and Ngnix) and a load balancer (based on HAProxy). Web
servers are synchronized through Memchached, so that the
accesses to the web application are synchronized. The Chef
cookbook associated to the WebContainerPool can be used also
independently of the SPECS framework. It is worth pointing
out that, if the aim is to apply the same process to a different
cloud service (e.g., a Secure CMS), it is first necessary to
develop a Cloud service cookbook dedicated to offer the CMS,
and later on to select the security mechanisms that can be
offered for it, possibly developing custom ones.

Security Mechanisms Definition: The proposed service
(web container), as outlined above, relies on (a pool of)
virtual machines, hosting synchronized web servers. The ser-
vice offers some integrated security features (redundancy and
diversity), but a lot of additional security capabilities can
be provided. In SPECS three main security mechanisms are
already available:

• TLS: it is a preconfigured TLS server, configured
according to security best practices.

• SVA (Software Vulnerability Assessment): it regu-
larly performs vulnerability assessment over the vir-
tual machines, through software version checking and
penetration tests.

• DoSprotection: it consists in a solution for denial of
service attacks detection and mitigation based on the
OSSEC tool.

The main role of the developer is to select the mechanisms
to be provided together with the web server mechanism from
the catalogue of available security mechanisms (mantained by
the SPECS Service Manager). If the developer is interested
in offering additional security mechanisms, enforcing security
metrics and capabilities not yet supported in SPECS, he has
to develop a new cookbook, and enrich it with the SPECS
metadata. This activity is out of the scope of this paper.

Preparation and deployment of the Security SLA tem-
plate: This is the main developer task, as it summarizes all
the possible offers to the End-user. Once the template is
available, the SPECS application execution is fully automated.
WS-Agreement templates are written according to the SLA
model proposed in Section III, following the WS-Agreement
schema and the SPECS security extensions. The XML schema
corresponding to our Security SLA model is available at
http://www.specs-project.eu/schema.

Deployment of Security Mechanisms: To complete the
deployment of the SPECS application, the security mecha-
nisms have to be deployed. This entails:

• All cookbooks of the chosen security mechanisms are
added to the Chef repository associated to SPECS
implementation component.

• All cookbook metadata are made available on the SLA
Platform, which offers a simple REST API to upload
such data and check them.

• The application template is uploaded to the Negotia-
tion module (by using the dedicated REST API).

The above example is available online as
demonstrator application at http://apps.specs-project.eu/
specs-app-webcontainer-demo CCM/. All the mentioned
cookbooks can be found in the SPECS bitbucket repository
(https://bitbucket.org/specs-team/).

VII. RELATED WORK

It is widely recognized that the lack of security perceived
by customers and business owners prevents the large-scale
adoption of clouds solutions. As a matter of fact, due to
the delegation of the management of all resources to the
cloud, customers lose control over the status of their data
and applications, making it impossible to be in charge of the
security level of their applications. Currently there is a lot of
ongoing work of the security research community, aiming to let
cloud users trust that their applications are securely executed,
suitably protecting their data. This has led to the multiplication
of ad hoc security solutions, not portable or even not useful
in different contexts [11].

Only recently it has been recognized the need to tackle
security problems from the start, i.e., at application design
time, as the addition of security features to an existing ap-
plication is complicated and partly ineffective. Mohammadi et
al. are working on the development of applications that can
provide trustworthiness (the assurance that the system will
perform as expected [12]) by design [13], [14]. The idea is
to design the software in a way so that there will be mecha-
nisms to ensure, evaluate and monitor trustworthiness, relying
on reusable development process building blocks, consisting
of method descriptions (guidelines, patterns and check-lists)
ensuring that the right mechanisms are put in place to ensure
trustworthiness.

The solution discussed in this paper instead relies on the
use of SLAs. As the guarantees on the provisioning of a
service is customarily managed through Service level Agree-
ments between service providers and customers, an almost
obvious solution is to use SLAs also for security, specifying
suitable Service Level Objectives (SLOs) dedicated to security.
Standards for the definition of the security terms in an SLA
are still lacking, but there is currently a lot of ongoing
work by dedicated standard groups (as the SLA C-SIG from
the European Commission, the CSCC SLA group [15]) and
research projects (see CUMULUS [16], A4Cloud [17], and
SPECS [2]).

As mentioned before, the FP7-ICT programme project
SPECS addresses cloud security through SLAs. Its objective
is to improve the state-of-the-art in cloud computing security
by creating, promoting and exploiting a user-centric framework
and a platform dedicated to offer Security-as-a-Service using a
SLA-based approach, in particular with respect to negotiation,
continuous monitoring and enforcement [2], [3].

WS-Agreement [4] is the only standard supporting a formal
representation of SLAs and a protocol that aims at their
automation. The main limit of such solution is that it was
devised in a grid-oriented technological context, and that it is
not completely fit in other contexts, such as clouds.

The majority of the cloud-oriented FP7 projects (Contrail5,
mOSAIC6, Optimis7, PaaSage8) are inclined to adopt WS-
Agreement representations, suitably adapted to the cloud con-
text. In one case [18] the implementation approach followed is
similar to the one adopted by SPECS [6], in that a REST API is
developed to support the WS-Agreement protocol. However, to
the best of our knowledge, none of the main commercial IaaS
providers (Amazon, Rackspace, GoGRID, ...) currently offers
negotiable SLAs. A survey of the SLAs offered by commercial
cloud providers can be found in [19].

Not so much work has been done in the area of configur-
ing security requirements specified through SLA documents.
Karjoth et al. [20] introduce the concept of Service-Oriented
Assurance (SOAS). SOAS adds security providing assurances
(an assurance is a statement about the properties of a compo-
nent or service) as part of the SLA negotiation process.

Smith et al. [21] present a WS-Agreement approach for

5http://www.contrail-project.eu
6http://www.mosaic-cloud.eu
7http://www.optimis-project.eu
8http://www.paasage.eu

http://www.specs-project.eu/schema
http://apps.specs-project.eu/specs-app-webcontainer-demo_CCM/
http://apps.specs-project.eu/specs-app-webcontainer-demo_CCM/
https://bitbucket.org/specs-team/

a fine-grained security configuration mechanism to allow an
optimization of application performance based on specific
security requirements. Brandic et al. [22] present advanced
QoS methods for meta-negotiations and SLA-mappings in Grid
workflows.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the SPECS framework
as a solution for developing secure cloud applications covered
by a Security SLA. The main benefit of using the SPECS
approach is the opportunity to offer security assurance to
cloud customers, by managing the life cycle of agreed security
parameters contained in Security SLAs. We have described
the Core services and APIs offered by the framework and
a Security SLA model, an extension to the WS-Agreement
standard, compliant with current standards and guidelines
provided by the NIST and by CSA. The development process
has been presented in detail to show how a security-enhanced
application can be straightforwardly developed making use of
the default SPECS application provided, and a case study has
been discussed to illustrate the functionalities and potentialities
of the framework.

Future versions of the default SPECS application will inte-
grate the security evaluation techniques that we are developing
in SPECS, in order to rank the Security SLA according to
customer requirements. Additional functionalities (e.g., end-to-
end encryption, vulnerability assessment, etc.) will be provided
in the future to enrich the set of APIs and the set of available
security mechanisms and monitorable metrics.

The SPECS applications may be deployed and offered by
Cloud Service Providers, in order to define and agree on SLAs
with their customers, but even by third-party providers that
can act as brokers of services to enrich security capabilities
of larger providers. This last delivery model may open new
business opportunities, especially in those contexts (i.e., public
sectors) where security represents the key factor to decide to
cloudify a service.

REFERENCES

[1] M. Dekker and G. Hogben, “Survey and analysis of security parameters
in cloud SLAs across the european public sector,” 2011.

[2] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano,
“Security as a service using an SLA-based approach via SPECS,” in
Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 2, 2013, pp. 1–6.

[3] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Preliminary
design of a platform-as-a-service to provide security in cloud,” in
CLOSER 2014 - Proc. of the 4th Int. Conf. on Cloud Computing and
Services Science, Barcelona, Spain, April 3-5, 2014., 2014, pp. 752–
757.

[4] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement
specification (WS-Agreement),” in Global Grid Forum. The Global
Grid Forum (GGF), 2004.

[5] International Organization for Standardization, “ISO/IEC NP 19086-1.
Information Technology–Cloud Computing – Service Level Agreement
(SLA) Framework and Technology – Part 1: Overview and Concepts,”
2014.

[6] A. De Benedictis, M. Rak, M. Turtur, and U. Villano, “REST-based
SLA Management for Cloud Applications,” in Proc. 2015 IEEE 24th
International Conference on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE 2015), 2015, pp. 93–98.

[7] V. Casola, A. De Benedictis, and M. Rak, “User-centric security
monitoring in the cloud: a SLA-based approach,” in To Appear in Proc
of The 1st International Workshop on Security Testing And Monitoring,
2015.

[8] NIST, “NIST Special Publication 800-53 Revision 4: Security and
Privacy Controls for Federal Information Systems and Organizations,”
2013.

[9] Cloud Security Alliance, “Cloud Control Matrix v3.0,” https://
cloudsecurityalliance.org/download/cloud-controls-matrix-v3/.

[10] NIST, “NIST Special Publication 500-307 Draft: Cloud Computing
Service Metrics Description,” 2015.

[11] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From security to
assurance in the cloud: a survey,” ACM Comput. Surv., vol. 48, no. 1,
pp. 2:1–2:50, Jul. 2015.

[12] A. Aviienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[13] F. Di Cerbo, P. Bisson, A. Hartman, S. Keller, P. Meland, M. Moffie,
N. Mohammadi, S. Paulus, and S. Short, “Towards trustworthiness
assurance in the cloud,” in Cyber Security and Privacy, ser. Communi-
cations in Computer and Information Science, M. Felici, Ed. Springer
Berlin Heidelberg, 2013, vol. 182, pp. 3–15.

[14] N. Mohammadi, T. Bandyszak, S. Paulus, P. Meland, T. Weyer, and
K. Pohl, “Extending software development methodologies to support
trustworthiness-by-design,” vol. 1367, 2015, pp. 213–220.

[15] CSCC, “The CSCC practical guide to cloud service level agreements,”
Tech. Rep.

[16] A. Pannetrat, G. Hogben, S. Katopodis, G. Spanoudakis, and C. Ca-
zorla, “D2.1: Security-aware SLA specification language and cloud
security dependency model. technical report, certification infrastructure
for multi-layer cloud services (cumulus).” 2013.

[17] S. Pearson, “Toward accountability in the cloud,” Internet Computing,
IEEE, vol. 15, no. 4, pp. 64–69, July 2011.

[18] R. Kübert, G. Katsaros, and T. Wang, “A RESTful implementation
of the WS-Agreement specification,” in Proceedings of the Second
International Workshop on RESTful Design, ser. WS-REST ’11. New
York, NY, USA: ACM, 2011, pp. 67–72.

[19] L. Wu and R. Buyya, Performance and Dependability in Service
Computing: Concepts, Techniques and Research Directions. IGI
Global, USA, 2011, ch. Service Level Agreement (SLA) in Utility
Computing Systems.

[20] G. Karjoth, B. Pfitzmann, M. Schunter, and M. Waidner, “Service-
oriented assurance, comprehensive security by explicit assurances,”
in Quality of Protection, ser. Advances in Information Security,
D. Gollmann, F. Massacci, and A. Yautsiukhin, Eds., vol. 23.
Springer US, 2006, pp. 13–24. [Online]. Available: $http://dx.doi.org/
10.1007/978-0-387-36584-8 2$

[21] M. Smith, M. Schmidt, N. Fallenbeck, C. Schridde, and B. Freisleben,
“Optimising Security Configurations with Service Level Agreements,”
in Proceedings of the 7th International Conference on Optimization:
Techniques and Applications (ICOTA 2007). IEEE Press, 2007, pp.
367–381.

[22] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya, “Ad-
vanced QoS methods for Grid workflows based on meta-negotiations
and SLA-mappings,” 2008 Third Workshop on Workflows in Support of
LargeScale Science, 2008.

https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/
$http://dx.doi.org/10.1007/978-0-387-36584-8_2$
$http://dx.doi.org/10.1007/978-0-387-36584-8_2$

	Introduction
	The SPECS Framework
	The Security SLA model
	Anatomy of a SPECS Application
	Development Process
	The Web Container Example
	Related Work
	Conclusions and Future Work
	References

