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ABSTRACT
The large adoption of cloud services in many business domains
dramatically increases the need for e�ective solutions to improve
the security of deployed services. The adoption of Security Service
Level Agreements (Security SLAs) represents an e�ective solution
to state formally the security guarantees that a cloud service is
able to provide. Even if security policies declared by the service
provider are properly implemented before the service is deployed
and launched, the actual security level tends to degrade over time,
due to the knowledge on the exposed attack surface that the at-
tackers are progressively able to gain. In this paper, we present a
Security SLA-driven MTD framework that allows MTD strategies
to be applied to a cloud application by automatically switching
among di�erent admissible application con�gurations, in order to
confuse the attackers and nullify their reconnaissance e�ort, while
preserving the application Security SLA across recon�gurations.
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1 INTRODUCTION AND MOTIVATION
Today the cloud computing paradigm is widely adopted in many ap-
plication domains and has quickly become a must-have enterprise
technology. According to the report recently published by the in�u-
ential American market research Forrester, the total global public
cloud market will be $178B in 2018, up from $146B in 2017, and
will continue to grow at a 22% compound annual growth rate, and
more than 50% of global enterprises will rely on at least one public
cloud platform to drive their business. This notable growth has led
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to the explosion of research studies targeting cloud infrastructures
and focusing on the related technical challenges, ranging from
architectural and structural aspects to security and performance
issues. With regard to security, despite the high interest shown
by the research community in the last years, and the variety of
solutions that have been proposed to protect cloud infrastructures,
many challenges remain open, and there is still some reluctance, in
prospective cloud customers, to trust cloud providers when sensi-
tive data management is involved.

The adoption of Security Service Level Agreements (Security
SLAs), formally stating the security guarantees o�ered to customers
by a given cloud service, represents an e�ective solution to the
above problem, as pointed out by several recent research projects
(e.g., CUMULUS [23], A4Cloud [24], SPECS [27], MUSA [20]). In
previous work ([3–5]), we showed how to automate the develop-
ment and deployment of a cloud application subject to a given
Security SLA, and we highlighted how the security level o�ered
by an application depends not only on how the application has
been developed internally, but also on the cloud resources selected
for deployment and on their intrinsic security. The introduction
of Security SLAs implies that the granted level of security is pre-
served during service operation, in order not to incur penalties due
to SLA violation. Even if security policies declared by the service
provider are properly implemented before the service is deployed
and launched, security incidents may still happen, due to existing
vulnerabilities, resulting in a security degradation.

Incident response strategies may be applied to mitigate the ef-
fects of security incidents, but the adoption of proactive strategies
aimed at avoiding, as much as possible, that perpetrated attacks re-
sult successful, are highly desirable. Moving Target Defense (MTD)
[17] is a very promising proactive defense approach, which aims
at anticipating the attackers’ moves by continually changing the
attack surface of the system, de�ned in [19] as the set of system
methods, channels, and data that can be exploited to perpetrate
an attack. With a dynamic attack surface, the reconnaissance ef-
fort that typically precedes the actual attack and that enables the
attacker to gain knowledge on the vulnerabilities of the system is
almost nulli�ed, and the uncertainty on the new target to attack is
increased.

As discussed in Section 2, several researchers have proposed the
adoption of MTD techniques to secure cloud environments, and
many of the existing proposals focus on dynamically changing the
deployment con�guration (i.e., the virtual machines - VMs - used
to deploy a cloud service) in order to counteract denial of service
attacks. In fact, cloud applications and in particular those relying
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upon Infrastructure-as-a-Service (IaaS) services (i.e., leasing VMs
from a provider) are particularly prone to attacks targeting VMs
due to the relatively limited VM o�er that is available today: VM
instances o�ered by di�erent providers are quite homogeneous
and, as a matter of fact, help decrease the attacker’s uncertainty on
potential targets.

In this paper, we aim at investigating how to exploit the potential
of MTD strategies in a cloud system that relies upon Security SLAs
to deliver security-guaranteed services, by overcoming existing
practical limitations to their wide adoption. As mentioned before,
the level of security that can be ascribed to a cloud service (repre-
sented by a formal Security SLA) is a combination of the policies
implemented internally by the service, of the intrinsic security of
the cloud resources used for deployment, and of the relationships
existing among all the involved system components: how to pre-
serve a Security SLA in presence of MTD techniques, which require
a change in the system con�guration?

To answer this question, in this paper we propose a Security
SLA-driven MTD framework that enables (i) to determine, in an
automated way, the set of admissible service con�gurations that
respect a given Security SLA and (ii) to switch, automatically, from
an admissible con�guration to another according to a recon�gu-
ration strategy. Admissible con�gurations are obtained starting
from a high-level model of the application and by applying novel
techniques that enable to take into account all the relevant aspects
discussed above to determine the security level of a cloud applica-
tion. The remainder of the paper is organized as follows. In Section
2, we discuss some relevant existing work on the application of
MTD techniques to cloud environments. In Section 3, we introduce
our approach to MTD for cloud applications, and in Section 4 we
sketch the proposed Security SLA-driven MTD framework. Finally,
in Section 5, we draw our conclusions and discuss future research
directions.

2 RELATEDWORK
The application of moving target defense strategies in the cloud
environment has been addressed by several research studies in the
last years. Most of the proposed strategies entail a recon�guration
of the VMs used for the service deployment, and consider proper
migration techniques to ensure the service correct operation.

The authors of [25] consider a scenario where a cloud service is
deployed on one or multiple VM instances belonging to a pool, and
the attacker repeatedly probes and attacks the VM pool in order
to disrupt the service with the aim of capturing the VM instances
on which the service is actually deployed. In order to thwart this
attack, the authors propose an MTD strategy according to which, at
pre-determined time intervals, an active VM decides both whether
to migrate and the migration target based on a probability function
that takes into account an estimate of the attacker’s capability and
of the exposed attack surface of all the instances, de�ned in terms
of their externally accessible resources.

The work presented in [18] speci�cally addresses denial of ser-
vice and distributed denial of service attacks, by proposing an MTD
strategy consisting in a selective replication of attacked server in-
stances at di�erent network locations, with the aim of isolating
persistent bots that follow the moving replica servers to continue

a DDoS attack. The a�ected client sessions are migrated to the
replacement replica servers and the attacked servers are taken of-
�ine and recycled after client migration is completed. The authors
designed a family of algorithms for optimally reassigning clients
from the attacked replicas to the new shu�ing replica servers.

Live VM migration is considered also in [2], where the authors
propose the adoption of the ANCOR framework to create an MTD
platform in which any running component of an IT system (i.e.,
any instance or cluster of instances) can be replaced with a pristine
version by leveraging con�guration management tools.

The authors of [8] propose to use the network programming
capabilities of Software-De�ned Networking (SDN) to implement
MTD strategies. The presented system architecture includes four
modules, devoted respectively to attack and information gathering,
attack analytics, countermeasure selection and enforcement, and
policy con�ict checking and resolution. In particular, the last mod-
ule ensures that the implemented recon�gurations (consisting in
VM migration and subsequent reshaping of �ow rules) are consis-
tent with the overall security policy and do not cause unexpected
side-e�ects as a result of con�icts with other �ow rules present
in the system. The adoption of SDN capabilities to e�ciently im-
plement node migration is also proposed by the authors of [30],
where cloud monitoring tools are used to detect deviations from
the expected behavior in order to trigger recon�guration.

A more general approach is presented in [16], where the applica-
tion of Software Behavior Encryption (SBE) to cloud environments
is discussed. SBE consists in obfuscating the system to attackers
by means of software diversity and redundant version shu�ing,
and the authors of this paper propose to apply diversity in the
implementation of the software (Java, C, C++, etc), the operating
system in which it runs (Windows, Linux, etc.), and in the physical
location of the virtual machines in which the software is running.
The authors propose to evaluate the e�ectiveness of the above strat-
egy by measuring the resiliency of the system in terms of attack
surface, con�dentiality, integrity, availability and survivability.

An interesting approach to the evaluation of MTD strategies
is presented in [15], where a hierarchical attack representation
model (HARM) is used to model the di�erent MTD techniques. In
particular, VM live migration, OS diversity and VM redundancy are
analyzed to measure the related e�ects on performance and security.
Based on the same approach, combinations of MTD strategies are
analyzed in [1].

To the best of our knowledge, independently on the speci�c sug-
gestedMTD technique, existing approaches do not take into account
the intrinsic security level that unavoidably characterizes a certain
system con�guration when determining what are the admissible
con�gurations. When present (in very few cases), the discussion on
the admissible con�gurations to activate only refers to the techni-
cal issues that possibly exist. Our approach, on the contrary, takes
into account the level of security provided by each possible cloud
application con�guration, modeled in terms of Security SLAs, and
ensures that an SLA is preserved across recon�gurations.



3 APPLYING MTD TO CLOUD-BASED
SERVICES

In this section, we introduce our approach to implementing moving
target defense within cloud-based services subject to Security SLAs.
In particular, we �rst illustrate the models and related modeling for-
malisms adopted to represent cloud applications and Security SLAs
in Section 3.1, and then we summarize the main MTD techniques
and discuss their application to cloud-based services in Section 3.2.

3.1 Cloud applications and Security SLAs
At a high level of abstraction, a cloud application can be seen as a
collection of cooperating software components. In general, each
application component o�ers a speci�c service and may be mapped
to a cloud resource belonging to one of the three well-known
cloud service types, namely IaaS (Infrastructure-as-a-service), SaaS
(Software-as-a-service) and PaaS (Platform-as-a-service). For sim-
plicity sake, in this paper we will only consider the case in which
application components are COTS or custom pieces of software
that must be deployed on a virtual machine (IaaS) to be executed.

In order to model cloud application deployments and enable their
automated security assessment, which is fundamental to determine
the admissible con�gurations for MTD application, we exploit a
simple yet powerful modeling formalism introduced in [26], i.e.,
the Multi-cloud Application Composition Model (MACM). MACM is
a graph-based representation that allows to describe, in a simple
and immediate way, the logic building blocks of an application,
the associated security guarantees (in terms of Security SLAs),
the relationships existing among application components and the
information related to their deployment.

Figure 1: An example of MACM representation

Figure 1 shows, on the top, the deployment-independent MACM
representation of a simple cloud application made of three logic
components, namely a web application W, a storage component
DB and a generic service S, where the use relationship is outlined
between W and DB and between W and S. On the bottom, the �gure
shows the deployment-speci�c MACM representation of the same
application in two di�erent deployment con�gurations. It is worth

noting that the two deployment con�gurations expose a di�erent
attack surface and are able to provide a di�erent set of security
guarantees, even if the implementation of components does not
change. The formalism makes it possible to model cloud service
providers (CSP1 and CSP2 in the �gure), virtual machines (VM1 and
VM2 in the �gure), and the relationships existing among these nodes:
a CSP node provides a VM, and a VM hosts a component. In addition,
the formalism allows to specify properties (not shown in the �gure)
of both nodes and edges, which provide additional information (e.g.,
the type of a component and its resource demand, the protocol used
for components’ communication, the IP address of a VM, etc.) used
for assessment and deployment operations.

As said, our approach relies upon the adoption of Security SLAs
as a means to model and assess the level of security granted by a
given cloud application deployment con�guration. The Security
SLA model we adopt in this paper has been formalized in [3]. Ac-
cording to this model, a Security SLA includes a declarative section
and a measurable section. In the declarative section, the security
policies implemented by the service, referred to as the security capa-
bilities, are speci�ed in terms of standard security controls, belonging
to a standard security control framework (such as the NIST Security
Control Framework [22] or the Cloud Security Alliance’s Cloud
Control Matrix [11]). In the measurable section, the actual security
guarantees o�ered by the service are speci�ed in terms of Security
Service Level Objectives (SLOs). Security SLOs are represented by
boolean conditions involving suitable security metrics, which are
directly mapped to the security capabilities declared in the SLA
and that can be measured, by means of proper monitoring tools, in
order to verify the ful�llment of the SLA.

With regard to security, the MACM formalism introduced above
allows to distinguish among the actual security guarantees associ-
ated with each application component, represented by the respec-
tive Security SLA, and the potential security guarantees that each
component is able to grant only based on its internal implementa-
tion, without taking into account the impact of deployment on the
�nal security level. These potential guarantees are stated in an SLA
Template, which is explicitly considered by the MACM formalism
to annotate the application model with security information.

Figure 2 reports an example of security-annotated deployment-
speci�c MACM representation for one of the deployment con�gura-
tions of the simple application introduced above. In particular, the
example refers to a deployment con�guration whose actual level
of security has not been assessed yet, since only the SLA granted
by CSP1 (i.e., SLACSP1) is available, while for the other compo-
nents only the SLA Templates they support are depicted. As brie�y
summarized in the next section and widely discussed in [26], by
suitably processing the MACM representation of an application,
it is possible to assess the actual level of security granted by each
component of the application and by the application as a whole, by
taking into account the structure of the application, the enforced
security policies (i.e., the available SLAs and SLA Templates) and
the impact of the deployment choices.



Figure 2: An example of security-annotated MACM repre-
sentation

3.2 MTD strategies and cloud services
MTD can be applied to a generic system in several di�erent ways. In
particular, as outlined in [15], three main di�erent MTD techniques
can be identi�ed:

(1) diversity: di�erent implementations of the system (e.g., in
terms of operating systems, application servers, binary im-
age, etc.) are used to deliver the same functionality. The
di�erent implementations are not a�ected by the same vul-
nerabilities and weaknesses, and it is di�cult for an attacker
to use the knowledge possibly gathered on a system imple-
mentation to damage also the other versions. We include
in this technique not only the usage of di�erent versions
of the same system, but also the adoption of di�erent input
parameters (e.g., a di�erent key used by the same cipher
component) and of di�erent algorithms and protocols that
slightly change the internal behavior of the system while
preserving the same external functionalities.

(2) redundancy: multiple replicas of the system (services, nodes,
paths) are used to deliver the �nal service to customers. The
way replicas are actually invoked/activated is unpredictable
for the attacker, which cannot target a speci�c replica to
attack. This technique is particularly suited against denial
of service attacks.

(3) shu�e: system settings at various layers are rearranged
during system operation (e.g., address randomization, in-
struction set randomization, live VM migration, topology
rearrangement). This technique is maybe the most e�ective
one, but it is also the most expensive and complex and it is
not always viable in real systems.

When dealing with a cloud application, all of the above three
techniques can be applied, even in combination, at several layers.
In particular, as shown in Figure 3, we can consider two main logic
layers for MTD application to cloud-based services, namely the
application logic layer and the application deployment layer.

Figure 3: Recon�gurable layers of a cloud application

When considering the application logic layer, the attack surface
may be changed by acting on the application architecture in terms
of the nature and number of components, the internal behavior
and/or implementation of components, and the protocols used for
communication. On the other side, applying MTD at the applica-
tion deployment layer means updating dynamically the deployment
con�guration, namely the mapping of components to VMs. This in-
cludes updating the VM settings, the virtualization technologies and
the underlying hardware layer. Note that this may even imply the
migration over VMs hosted on di�erent hardware infrastructures
and managed by di�erent providers.

The �exibility and automation level provided by the cloud tech-
nologies make the application of redundancy (a cloud application
component is replicated over multiple VMs) and diversity (multiple
types of VMs are used in the deployment both during time and in
parallel) strategies quite easy from the technical point of view, as
also demonstrated by the high number of solutions of this kind
existing in the literature. Nevertheless, in the application of these
strategies, recon�guration must be carefully designed, since the
activation of a new con�guration may actually reduce the level of
security achieved by the system instead of increasing it, due to the
speci�c security policies implemented by each provider, to the pe-
culiar features of the hosting VMs, and to the speci�c relationships
existing among the application components.

Although presenting a speci�c recon�guration strategy is not
the objective of this paper, for the sake of completeness hereafter
we will refer to concrete strategies for the application of MTD
both at the application logic layer and at the deployment layer. As
for the application logic layer, we will consider the combination
of diversity and redundancy techniques based on the contempo-
rary adoption of di�erent implementations of the same application
component, presenting the same external interface but realizing a
di�erent internal behavior. More speci�cally, with reference to the
example application introduced above and depicted in Figure 1, we
designed an MTD strategy consisting in replicating the web appli-
cation component, installing di�erent application servers on each
replica, and periodically switching among the di�erent replicas
to serve client requests. Such MTD technique can be easily imple-
mented by setting up a pool of synchronized web servers, managed



Figure 4: Security SLA-driven MTD framework

by a proxy component acting as a load balancer and request for-
warder. At current state, our implementation supports two di�erent
web servers, namely Apache [29] and Nginx [21], and relies upon
HAProxy [31] to perform load balancing. Since it is not guaran-
teed that the requests starting from the same client are handled by
the same web server, we used Memcached [13] (a general-purpose
distributed memory caching system) to store session information.

At the deployment layer, we will consider the adoption of di�er-
ent deployment con�gurations involving di�erent VM instances to
host the web server replicas, leased from multiple providers and
characterized by di�erent capabilities and security properties. The
acquisition and con�guration of VMs is managed by a component
of our framework, as discussed in Section 4.

In the next section, wewill sketch the architecture of our Security-
SLA driven MTD framework, which enables to identify the admis-
sible deployment con�gurations able to ful�ll a given Security SLA
and to automatically switch among them in order to ensure proac-
tive defense in line with the MTD philosophy.

4 A SECURITY SLA-DRIVEN MTD
FRAMEWORK

The MTD framework discussed in this section has been devised
to foster the application of MTD techniques to the cloud comput-
ing paradigm, by coping with the need for assessing the level of
security provided by each cloud application con�guration and for
identifying, in an automated way, the application con�gurations
that allow to ful�ll a given Security SLA. The proposed framework
is composed of six main building blocks (see Figure 4):

• modeler: manages and enhances the model of the applica-
tion in the di�erent stages of its execution, since the initial
deployment and during all recon�guration stages;

• deployment con�guration generator: generates admissible
deployment con�gurations, i.e., deployment con�gurations
that enable to ful�ll the application Security SLA; it retrieves
the information on available cloud (IaaS) services and on
security guarantees published by service providers from a
service catalogue and an SLA repository, respectively (not
shown in the �gure);
• SLA composer : computes the Security SLA that a given cloud
application deployment con�guration is able to ful�ll;
• security reasoner: evaluates the global security level asso-
ciated with a given Security SLA in terms of a score and
compares and ranks di�erent Security SLAs (associated with
di�erent deployment con�gurations) based on the respective
scores;
• recon�guration engine: applies a recon�guration strategy by
iteratively selecting the next con�guration to activate among
the admissible ones;
• deployer: automatically acquires and con�gures the (IaaS)
resources needed to launch a new deployment con�guration.

The interactions among the above components are reported
in Figure 4. The high-level model of the application, built by the
application developer through the modeler interface, is supplied to
the deployment con�guration generator (1), which generates all the
possible deployment con�gurations that satisfy existing resource
demand requirements. These candidate deployment con�gurations
are passed to the SLA composer (2), which computes the actual
Security SLA that each given deployment is able to ful�ll (i.e., the
assessed Security SLA of each application con�guration) and returns
them back to the deployment con�guration generator (3). It is worth
noting that, during this process, the SLA composer and the modeler
interact with each other in order to update the current model of
the cloud application. Assessed Security SLAs are submitted to the



security reasoner (4), which is responsible for selecting only those
that represent a level of security equal or greater than the level
of security represented by the application desired Security SLA.
The admissible Security SLAs, corresponding to all the deployment
con�gurations that are able to provide at least the required level
of security, are then passed back to the deployment con�guration
generator (5) and constitute the set of admissible con�gurations
that can be used by the recon�guration engine (6) to implement
the MTD strategy. The actual deployment and execution of each
con�guration are automatically managed by the deployer, which
is able to acquire the needed resources and con�gure them with
the proper application components (7). As shown, recon�gurations
are triggered iteratively according to a recon�guration strategy
implemented by the recon�guration engine. It is worth noting that,
during the above operations, the high-level model of the application
is dynamically updated and enhanced with deployment and security
information.

In the following subsections, we will give some details about
the generation of deployment con�gurations, the assessment of
con�gurations’ level of security, the comparison of con�gurations’
SLAs, and the con�gurations’ automated deployment and execution.
The components responsible for these operations have been partly
developed in the context of previous researches conducted by the
authors of this paper, and have a fundamental role in enabling the
adoption of MTD techniques in cloud applications while preserving
Security SLAs across recon�gurations. Finally, we will discuss the
existing design issues related to the recon�guration engine, and we
will provide some directions toward its implementation.

4.1 Deployment con�guration generator
The deployment con�guration generator is responsible for identi-
fying the possible application deployment con�gurations, namely
the possible component-VM mappings, which satisfy the resource
demand requirements of the application components. Such require-
ments are speci�ed by the developer whenmodeling the application
high-level architecture and are reported in the MACM representa-
tion as properties of respective nodes.

As pointed out in [4], the mapping of application components
to cloud resources cannot be treated as a traditional assignment
problem, since the number and type of target resources is not pre-
determined and �xed. Indeed, current cloud service providers typi-
cally o�er di�erent types of virtual machine instances, each char-
acterized by di�erent computation and storage capabilities and by
a di�erent cost. Moreover, available instances are often equipped
with a di�erent software stack and are provided with di�erent
protection mechanisms, thus o�ering a di�erent level of security.

The deployment of a cloud application may involve the acqui-
sition of multiple instances of the same type, or even of a hetero-
geneous set of instances, possibly leased from multiple providers,
therefore the number of resources to acquire for deployment is not
known a-priori.

Let C = {c1, · · · ,cn } be the set of the n software components of
the cloud application to deploy and let O = {o1, · · · ,om } be the set
of them available o�erings, each representing a di�erent type of
VM instance that can be acquired to host application components.
Theoretically, any partition ofC into a set of K  n disjoint subsets

is a potential deployment con�guration, with each subset represent-
ing one VM instance hosting one or more components. Actually, if
considering the real constraints of an application, only some of the
possible partitions of C represent a feasible deployment con�gura-
tion, due to the resource demand constraints of each component
and the concrete capabilities o�ered by each instance. Moreover,
additional constraints related to cost should be considered in a real
deployment.

Several techniques can be adopted for the generation of can-
didate deployment solutions, including partial/total enumeration
approaches and random selection approaches. In [4], we presented
a simple algorithm to generate all the distinct deployment con�gu-
rations in the form < L,Q >, where L represents a possible partition
of C that simply groups together application components into sub-
sets named VM-sets, and Q states how each VM-set is mapped to
a real o�ering. Once a new deployment con�guration has been
identi�ed, verifying whether resource demand or cost constraints
are ful�lled is straightforward, assuming that the resource demand
of each component on the one hand, and the capabilities and cost
of each o�ering on the other, are known, as well as the maximum
cost that the application provider is willing to pay.

The deployment con�gurations that satisfy existing resource
demand and cost requirements are passed to the SLA composer, in
order to determine the Security SLAs that they are actually able to
grant.

4.2 SLA composer
The SLA composer takes in input the MACM representation of
an application deployment con�guration, and builds the Security
SLA associated with the application in that con�guration. The
SLA composition process has been widely discussed in [26]. It is
aimed at assessing what are the security controls that are correctly
implemented by the application and that can be included in the
application Security SLA: a security control is considered as “cor-
rectly enforced” by an application if and only if it is declared in the
SLA granted by each of the application components for which it is
relevant, including logic components, VMs and providers.

In order to clarify the impact of the deployment con�guration on
the achieved security and to demonstrate the need for composition,
let us consider an example. Control AC-3 - ACCESS ENFORCEMENT
of the NIST framework [22] requires that “The information system
enforces approved authorizations for logical access to information
and system resources in accordance with applicable access control
policies”. Such control can be implemented in several ways, even
in accordance with some of the related enhancements proposed
by NIST, which provide better speci�cation of the measures and
techniques to adopt (e.g., enhancement (7) requires the adoption of
role-based access control). Related to the deployment con�guration
marked as “Deployment 1” in the simple cloud application example
shown in Figure 1, if DB implements an access control policy but
the hosting VM does not, we have to state that the deployed DB does
not correctly implement control AC-3. It is worth mentioning that,
from the point of view of the DB component and of its speci�c re-
quirements, if both DB and the underlying VM correctly implement
an access control policy, it is not relevant whether it is also imple-
mented by W, that uses the DB, to state that the access control policy



Figure 5: SLA composition

requirement is covered by DB. Nevertheless, when considering node
W and the application as a whole, AC-3 is correctly implemented
if and only if it is enforced by W, DB and VM, since all the possible
access points to the system must be protected. In this regard, going
back to the MTD strategy introduced in Section 3.2, which relies
upon multiple (diverse) replicas of W, it is worth mentioning that the
di�erent web server implementations may adopt di�erent access
control enforcement policies, and they may result in con�gurations
that are not admissible with respect to the enforced Security SLA.

Let us consider a di�erent control, namely PE-2 - PHYSICAL
ACCESS AUTHORIZATIONS, which involves the management of a list
of individuals with authorized access to the facility where the infor-
mation system resides. Clearly, in the “Deployment 1” situation, if
provider CSP1 properly protects its physical facilities (i.e., the loca-
tions where the physical hardware server hosting VM1 is installed),
control PE-2 can be considered as correctly implemented by the
application. In the second deployment con�guration depicted in
Figure 1, if CSP2 does not declare PE-2 in its SLA, the controls will
be considered as not implemented.

In order to perform the assessment at each application com-
ponent, suitable composition rules are applied for each security
control independently of the others: these rules depend on the
type of control under analysis, on the way it is implemented in
each application component, on how components interact with one
another and on the resources used for their deployment.

In particular, during composition, the application MACM model
is translated into a set of Prolog facts and rules, which are dynam-
ically generated, based on the application logic and deployment
structure, by relying on a set of pre-built tables including the tem-
plate rules for each control. The rules take into account and suitably
combine (i) the security guarantees that are potentially granted by
each component and that are summarized in the respective SLA
Templates (resulting from the application MACM representation),
and (ii) the security guarantees intrinsically o�ered by adopted
cloud resources and by their respective providers.

The components’ SLA Templates can be obtained by applying
a security assessment process as described in [4], by means of a

questionnaire-based procedure aimed at identifying the security
policies enforced by each component internally.

The security level o�ered by the cloud resources used for deploy-
ment, instead, can be obtained, as mentioned in [14], by processing
the information that is currently available as a result of international
assessment initiatives aimed at evaluating the security o�ered by
existing providers (such CSA STAR program [10] and the Consen-
sus Assessments Initiative Questionnaire (CAIQ) [9], which is the
result of a providers’ security self-assessment process, promoted
by CSA and consisting in a set of yes or no assertions related to the
implementation of speci�c security controls). Alternatively, when
this information is not available, it can be obtained by means of a
security review process. As said, we assume that the information
on available services and on related security properties is available
in the service catalogue and in the SLA repository, respectively.

As anticipated, the SLA composer builds the Security SLA related
to each deployment con�guration produced by the deployment
con�guration generator, and makes these SLAs available to the
security reasoner, described in the following.

4.3 Security reasoner
The security reasoner is able to evaluate the global security level
corresponding to a given Security SLA and to compare di�erent
SLAs belonging to di�erent application deployment con�gurations.
Thanks to this capability, it is possible to identify the deployment
con�gurations that are able to provide the minimum desired level
of security, stated in the application desired Security SLA.

In [14], we showed how to compare di�erent SLAs based on the
Reference Evaluation Model (REM) methodology [6], previously
introduced to quantitatively measure the level of security of an
infrastructure. Security SLAs built by the SLA composer are com-
pared with the desired Security SLA by the security reasoner based
on the declared security capabilities and on the levels chosen for
the related metrics. The deployment con�gurations whose Security
SLA represents a level of security lower than the desired one are
simply discarded, while the others are ordered based on their global
security level and passed to the recon�guration engine.



4.4 Recon�guration engine
The recon�guration engine is the entity that determines the new
con�guration to activate based on a speci�c recon�guration strat-
egy. It is worth mentioning that the recon�guration strategy must
take into account several factors:
• the natural degradation of the security level due to the expo-
sure of the attack surface for a given period of time during
which an attacker can gain knowledge on it and exploit some
exposed vulnerability;
• the possible occurrence of a security incident (or the raise
of an alert), which may be detected during the application
monitoring phase immediately following the application
deployment.
• the risk associated with the speci�c application; indeed, not
all the applications are equally likely to be attacked depend-
ing on their mission, the type of enforced security policies,
the expected damage, the skills required from the attacker,
etc..
• the cost of recon�guration;
• the overhead introduced by recon�guration and the applica-
tion resiliency to the recon�guration’s (transient) adverse
e�ects (e.g., the application may experience some outage
period during recon�guration).

As anticipated, in this paper we are not interested in proposing
a speci�c recon�guration strategy, which will be addressed in our
future work. In general, a probabilistic approach similar to that
proposed by [25] may be adopted to determine the con�guration
that will be less likely attacked in the next round; alternatively, the
con�guration to activate may be chosen in order to optimize some
parameter, as done in [18], by applying an analytical optimization
model aimed at minimizing, for example, the recon�guration cost
or at maximizing the distance among subsequent con�gurations.

In any case, the output of the recon�guration engine is the
MACM representation of the con�guration to activate, which is
supplied to the deployer based on the recon�guration strategy. As
said, this process is iterative in order to continually change the
attack surface of the system.

4.5 Deployer
The deployer is responsible for automatically activating the new
deployment con�guration selected by the recon�guration engine
based on its MACM representation.

In [5], we presented the cloud application deployer tool devel-
oped in the context of the MUSA project [20]. Based on the appli-
cation deployment-speci�c MACM representation, the deployer
is able to build a deployment plan, speci�ed in the JSON format,
which includes all the information needed to automate resource
acquisition and con�guration. In particular, the plan has a dedicated
section for each provider involved in the deployment con�guration
that contains two sections, including respectively (i) some general
infrastructure-related information (i.e., the provider name, the re-
source Zone, the User needed to access the resource in order to
install and con�gure the software components, and - if supported
by the provider - the Network in which the resources have to be
con�gured) and (ii) the list of VMs to acquire along with the list
of components to install and con�gure on them. Con�guration

automation is supported by the cloud automation tool Chef [7]: in
particular, the components are speci�ed in the deployment plan by
means of the associated Chef cookbook and Chef recipes. Finally,
for each VM, the plan speci�es the inbound and outbound access
rules.

The deployer acquires the resources by means of a Broker and
deploys and con�gures the application’s components based on the
recipes speci�ed in the deployment plan for each virtual machine.
Afterward, it starts the cloud services and launches the application.
The acquisition and con�guration of the new resources can be
carried out in background, in order to limit as much as possible
the recon�guration overhead. Only when the new con�guration
is ready the old one can be stopped, in order to ensure service
availability.

With regard to the MTD strategies introduced in Section 3.2, a
Chef cookbook (the WebPool Cookbook) is available at [28], con-
taining the recipes to install Apache, Nginx and HAProxy, respec-
tively, on di�erent VMs acquired by the Broker according to the
deployment plan. It is worth mentioning that, at current state, the
most part of the MTD framework is available and the integration
of the recon�guration functionalities is quite straightforward.

5 DISCUSSION AND CONCLUSIONS
Moving Target Defense represents a promising proactive defense
technique that can be successfully used to protect systems from
targeted attacks, exploiting the knowledge on the system vulnera-
bilities progressively gained by means of reconnaissance e�orts.

MTD basically consists in recon�guring the system by applying
diversity, redundancy and shu�e techniques at several layers. In
this paper, we discussed the adoption of MTD techniques in the
cloud environment, outlining the need for assessing the level of
security intrinsically provided by each application con�guration
involved in the MTD recon�guration strategy. In particular, we
proposed Security Service Level Agreements as a means to state the
security guarantees provided by a cloud application, and presented
a Security SLA-based MTD framework that enables (i) to automat-
ically assess the level of security actually guaranteed by a cloud
application con�guration, (ii) to compare di�erent con�gurations
based on their security level, (iii) to automatically switch among
di�erent con�gurations by acquiring and con�guring related cloud
resources.

The goal of this paper was to highlight the issues related to the
provision of security guarantees in the cloud environment in the
presence of the high dynamism introduced by MTD techniques, an
aspect that seems to have been overlooked in existing work. As
a future research direction, we plan to work on the de�nition of
a novel recon�guration strategy able to ensure the best trade-o�
between the security gain and the recon�guration cost. Moreover,
since the evaluation of MTD strategies is still an open issue [12],
we plan to work on the de�nition of a quantitative measure of the
attack surface of a cloud application con�guration, in order to be
able to quantify and compare di�erent MTD strategies.
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