

This version of the article has been accepted for publication, after peer review (when

applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of

Record and does not reflect post-acceptance improvements, or any corrections. The Version of

Record is available online at: http://dx.doi.org/10.1007/s11219-023-09636-2

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
http://dx.doi.org/10.1007/s11219-023-09636-2

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single

Deep Autoencoder: Theory and Practice

Marta Catillo1*†, Antonio Pecchia1† and Umberto Villano1†

1Dipartimento di Ingegneria, Università degli Studi del Sannio,
Pal. Bosco Lucarelli C.so Garibaldi 107, Benevento, 82100 Italy.

*Corresponding author(s). E-mail(s): marta.catillo@unisannio.it;
Contributing authors: antonio.pecchia@unisannio.it;

villano@unisannio.it;
†These authors contributed equally to this work.

Abstract

Intrusion detection is a key topic in computer security. Due to the ever-
increasing number of network attacks, several accurate anomaly-based
techniques have been proposed for intrusion detection, wherein pat-
tern recognition through machine learning techniques is typically used.
Many proposals rely on the use of autoencoders, due to their capa-
bility to analyze complex, high-dimensional and large-scale data. They
capitalize on composite architectures and accurate learning approaches,
possibly in combination with sophisticated feature selection techniques.
However, due to their high complexity and lack of transferability of
the impressive intrusion detection results, they are hardly ever used in
production environments. This paper is developed around the intuition
that complexity is not necessarily justified because a single autoen-
coder is enough to obtain similar, if not better, intrusion detection
results compared to related proposals. The wide study presented here
addresses the effect of the seed, a deep investigation on the training
loss and feature selection across the use of different hardware plat-
forms. The best practices presented, regarding set-up and training,
threshold setting and possible use of feature selection techniques for
performance improvement, can be valuable for any future work on
the use of autoencoders for successful intrusion detection purposes.

Keywords: Intrusion detection, Deep learning, Autoencoders, Denial of
Service.

1

Springer Nature 2021 LATEX template

2 Successful Intrusion Detection with a Single Deep Autoencoder

1 Introduction

The body of scientific literature on machine and deep learning applied to intru-
sion detection systems (IDS) is huge and ever-increasing [1]. IDSes aim to
discover (and possibly block or divert) on-going attacks before any harm can
be done. IDS research is pushed by several factors, which include, but are not
limited to (i) availability of commercial and open source products to trans-
form raw network packets into ready-to-use flow records suited for machine
learning (e.g., Netflow, CICFlowMeter, Tranalyzer), (ii) increasing number of
public, flow-based, intrusion detection datasets (e.g., UNSW-NB15, UGR16,
CICIDS2017, USB-IDS-1) and (iii) specialized hardware and deep learning
frameworks (e.g., Keras, TensorFlow and PyTorch). It is a fact that network
traffic – transformed into fixed-length records of features – can be success-
fully leveraged to recognize potential attacks, which is the primary aim of an
IDS. Currently, a wide community of academics and practitioners is conduct-
ing measurement studies at the intersection of deep learning and IDS. Due to
the ever-growing occurrence and complexity of computer security incidents,
IDS research is – and will steadily remain – a hot research topic. For a number
of different reasons, present-day IDSes are only partially successful to avoid
the occurrence of security incidents. These reasons include the high complex-
ity and the huge bandwidth of currently used networks, the use of brand new
or unknown exploits, the amplitude of the so-called attack surface. Moreover,
often the security problem is blamelessly ignored, and suitable countermeasures
are set up only when it is too late.

The “pattern” followed by many IDS papers is typically the same: (i) pro-
posal of an algorithm or architecture based on neural networks (possibly deep
ones and combined with feature selection), (ii) training-testing with one (more)
public dataset(s), (iii) demonstration of impressive intrusion detection results
(typically close to 100%). At the time being, intrusion detection may seem a
perfectly solved problem with no room for further improvements. However, the
frequent occurrences of security incidents reported by the press indicate the
intrusion detection problem is still there, and that the experiments mentioned
in the papers have only limited validity in real-world networks. In spite of the
large availability of scientific proposals, there is a gap between “lab-made”
machine learning and operations. For example, highly-complex deep networks
proposed so far for intrusion detection, such as Convolutional Neural Net-
work (CNN), Long Short-Term Memory (LSTM) and cascades/ensembles of
AutoEncoders (AE), might find no or limited adoption in production environ-
ments. Not surprisingly, machine learning scholars tend to apply increasingly
complex learning models and to “blindly” trust and use public intrusion detec-
tion datasets – the main source of benchmarking data for machine learning in
IDS – but overlook the cybersecurity facets of traffic and attacks therein. For
example, we found out that many Denial of Service (DoS) attacks from various
public traffic captures are indeed ineffective under proper defense mechanisms
and suitable configurations of the victim servers [2], which means that part of
the community is spending a huge effort to develop learning approaches for

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 3

detecting harmless attacks. Another issue is the lack of transferability of the
impressive results obtained on reference datasets (possibly outdated and not
free from statistical biasing) to even slightly-different data collection settings,
documented by previous work, such as [3–6].

Differently from existing proposals, this paper does not aim to address
IDS through the application of increasingly complex deep learning models.
Rather, we develop around the intuition that complexity is not necessarily jus-
tified because a single – and relatively simple – neural network, such as the
autoencoder, is enough to obtain similar (if not better) intrusion detection
results when compared to related IDS proposals. An autoencoder can be con-
veniently trained only by means of benign network traffic in order to learn a
semi-supervised IDS model. It is unlikely that attacks are known beforehand;
as such, semi-supervised approaches are more widely applicable in practice. It
should be noted that among the wide corpus of related proposals, (multiple)
autoencoders are often used in complex cascades/ensembles configurations,
possibly complemented by sophisticated feature selection methods. Achiev-
ing a successful IDS through a single autoencoder underlies both theory and
practice. While there are common beliefs that underlie, at least in theory, the
design of AE-based IDSes (e.g., many autoencoders and more neurons imply
better detection, the randomization of the training facets – initialization of the
neurons and shuffling of the training data points – has a negligible effect on
the learning process, the lower the training loss the better the IDS detection
ability and that feature selection is beneficial to the results), the practice pro-
vides rather different outcomes. The gap between theory and practice, and the
effectiveness of feature selection in the context of a single AE, are investigated
through a large experimental campaign that aims to answer seven research
questions (RQ) grouped into the following high-level groups:

• TRAIN-RQs: do the randomization of the initial weights and data shuffling
(TRAIN-RQ1), the hardware platform (TRAIN-RQ2) and the final value
of loss (TRAIN-RQ3) have an impact on the success of the autoencoder at
detecting intrusions and how to achieve satisfactory detection performance
(TRAIN-RQ4)?

• FEATSEL-RQs: do relevant features depend on the selection techniques
and attacks (FEATSEL-RQ1) and does discarding less relevant features
allow mitigating the effect of the initial randomization of the training process
(FEATSEL-RQ2) and improving intrusion detection (FEATSEL-RQ3)?

Experiments are done with the benign traffic and DoS attacks from a recent
update of the widely-used CICIDS2017 public intrusion detection dataset; the
campaign is conducted with four hardware platforms and the ubiquitous Kera-
Tensorflow framework to demonstrate the relevance of the problems addressed.
The effectiveness of the AE-based IDS is assessed by computing the metrics
of recall, precision, F1 score and false positive rate (FPR).

Springer Nature 2021 LATEX template

4 Successful Intrusion Detection with a Single Deep Autoencoder

The results indicate that the randomization of the training facets, which we
assess by varying the seed1 of the pseudorandom number generator (PRNG),
affects the detection performance. For example, different values of the seed
make the F1 score to vary between 1.0 and 0.6 (if not less). This finding is
confirmed – and even exacerbated – across the platforms assessed, as we note
that different CPUs (or GPUs) lead to different exploitation of the threads
used in training phase and, in turn, to different outcomes: in consequence,
even when the seed is fixed, the results will be different from platform to plat-
form. Another practical challenge raised is that obtaining low loss values at
the end of the training process does not guarantee good IDS performance.
As for the use of feature selection, we observe that it is possible to obtain
marginal improvements of the detection metrics (e.g., F1 score from 0.982 to
0.987 by discarding 30 features of the original dataset) at a major risk of bad
classification of the attacks that are not seen at the time features are selected.
In a previous paper that appeared in the security and privacy track of an
information and communication technologies (ICT) quality conference [7], we
documented a preliminary experiment on the use of a single autoencoder for
intrusion detection. Here we present a much wider study, which addresses the
effect of the seed, a deeper investigation on the training loss and feature selec-
tion – as affected by the seed – and the use of four hardware platforms. Overall,
they contribute to more comprehensive experiments and findings along differ-
ent directions on the subject. Experiments indicate that, in spite of the good
theory on the topic, successful IDSes can be achieved only through extensive
practice.

The rest of this paper is organized as follows. Sect. 2 presents related
work in the area. Sect. 3 deals with the basics of autoencoders, the proposed
IDS approach with a single autoencoder and the reference dataset. Sect. 4
introduces the issues related to design and training of the autoencoder-based
IDS. Sect. 5 and Sect. 6 discuss the experiments and results on the effect of
the seed, the hardware platform and feature selection. Sect. 7 addresses the
threats to validity of our study, while Sect. 8 closes with lessons, conclusions
and directions of future research.

2 Related work

Intrusion detection systems (IDS) are part of the second defense line of a
system. The first line of defense, according to [8], are the prevention tech-
niques, such as authenticity, cryptography, secure routing and access control.
If an intrusion breaks through the first line of defense, then the second line
defense is the IDS, which prevents both inside and outside attacks harming the
network resources directly or indirectly. Despite decades of research and devel-
opment, existing intrusion detection systems still face challenges in improving
the detection, reducing the false positives and – possibly – detecting unknown

1The seed is the initial point of the sequence of values generated by the pseudorandom number
generator (PRNG)

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 5

attacks. In order to solve the above problems, researchers and practitioners
have put forward many machine learning and deep learning approaches for
intrusion detection [9]. These techniques can cope with large-scale and multi-
dimensional data by automatically reducing the network traffic complexity and
by finding the correlations among data without human intervention.

Unfortunately, due to obvious confidentiality and non-disclosure reasons,
publicly-available data related to spontaneous security attacks and incidents
are lacking. In consequence, research on network, system and application
security is often carried out by experimentation on data collected through
“lab-made” intrusions. In particular, research on intrusion detection systems
customarily relies on public intrusion detection datasets [10], collected by net-
work tools in a controlled testing environment trying to mimic realistic attack
conditions. Traffic data might be available in a raw format, such as pcap
packet data files, more “refined” formats, such as network flows organized in
comma-separated values (csv) files – specially crafted to apply modern machine
learning techniques – or both. In the latter case, each record pertains to a flow
and the label states if it is an attack or not. An example of an intrusion detec-
tion dataset, flow-based and widely used in literature, is certainly CICIDS2017
[11]. Released by the Canadian Institute for Cybersecurity (CIC) in 2017, it
simulates real-world network data and uses the tool CICFlowMeter – more on
this later– to produce labeled flow records. Other known flow-based intrusion
detection datasets are UNSW-NB15 [12], UGR’16 [13] and USB-IDS-1 [14].

Traditional network-centered security solutions have relied on predefined
signatures or system models for known threats [15]. Over the last few years,
there has been a growing interest in applying machine learning to net-
work security for misuse detection as well as anomaly detection. In general,
these approaches can be denoted as supervised or unsupervised, depending on
whether there is the need to train the algorithm on labeled instances or not.
Many machine learning solutions use supervised learning, where an algorithm
is trained on labeled data points, thus determining a function to map points to
classes. Many supervised approaches rely on a limited number of classifiers or
a single classifier and achieve outstanding performance – detection rate close
to 100% [16]. A large number of supervised methods also exploit artificial neu-
ral networks [17]. In the case of unsupervised techniques, instead, there is no
need for labeled data points during the training phase. In this context the aim
is to find the hidden structure of unlabeled data. Indeed, the vast majority
of the unsupervised detection schemes proposed in the literature are based on
clustering and outlier detection [18], [19].

Autoencoders are neural networks capable of learning features from unla-
beled data by automatically uncovering the underlying structure of the data
and by removing sources of variation in the input. Autoencoders were first
developed as nonlinear extension of the standard linear principal compo-
nent analysis (PCA) in order to make dimensionality reduction [20]. Kunang
et al. in [21] use an autoencoder for feature extraction and the SVM algo-
rithm for multi-class classification. Overall, the model achieves an accuracy of

Springer Nature 2021 LATEX template

6 Successful Intrusion Detection with a Single Deep Autoencoder

86.96% and precision of 88.65%. In [22] the Authors propose a novel HCPDP
(Heterogeneous Cross-Project Defect Prediction) method called Multi-Source
Heterogeneous Cross-Project Defect Prediction (MHCPDP). MHCPDP uses
an autoencoder to extract the intermediate features from the original datasets
instead of simply removing redundant and unrelated features, and adopts a
modified autoencoder algorithm to make instance selection for eliminating
irrelevant instances from the source domain datasets.

Autoencoders can be used also for anomaly detection tasks. In this context
they are mainly the components of more complex neural networks, specially
crafted with the aim to design sophisticated detectors. In [23] the authors
propose Kitsune, an unsupervised learning approach to detect attacks online.
Kitsune’s core algorithm is KitNet, which uses a collection of auto-encoder
neural networks to distinguish between normative and abnormal traffic. The
approach involves the integration of multiple autoencoders into a classifier.
Experimental results show that Kitsune is effective with different attacks,
and its performance is as outstanding as offline detectors. In [24] the authors
show an effective deep learning method, namely autoencoder-IDS (AE-IDS)
based on the random forest algorithm. In particular, they use random forest
to select the actual features from the original dataset. The main innovation
of the approach lies in the combination of 3-layer shallow autoencoders and
traditional unsupervised machine learning clustering algorithm. The experi-
mental results show that the proposed approach, evaluated by means of the
CSE-CIC-IDS 2018 dataset, is superior to traditional machine learning meth-
ods in terms of easy training, strong adaptability and high detection accuracy.
In [25], instead, an autoencoder-based anomaly detection method is proposed
that extracts behavior snapshots of the network and uses deep autoencoders
to detect anomalous network traffic produced from compromised IoT devices.
Finally, Zhong et al. [26] propose an anomaly intrusion detection framework
based on multiple deep learning methods. The authors use an autoencoder in
order to identify anomaly scores of network traffic. The data with the anomaly
score tag is then used to train a long short-term memory (LSTM) predictor.
The measurement analysis shows that the approach gives better accuracy than
other state-of-the-art algorithms. It is worth pointing out that all the afore-
mentioned autoencoder systems adopt fairly sophisticated infrastructures. The
objective of this paper is instead to discuss the adoption of a simpler solution
based on the use of a single autoencoder.

As for the feature selection task, it can be performed by either supervised
or unsupervised methods, depending on whether the label of the data points
(if any) is used or not, respectively. The papers [27], [28] and [29] are gen-
eral surveys on feature selection. Unsupervised feature selection methods are
instead surveyed in [30]. A comprehensive study of feature selection aimed at
intrusion detection systems is presented in [31] with experiments on the NSL-
KDD and UNSW-NB15 datasets. In paper [32] a combination of filter-based
feature reduction algorithms is applied to the CICIDS2017 DoS dataset, the
same dataset used as a testbed in this paper. The proposed method results

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 7

Fig. 1: Representation of an autoencoder.

in 24 reduced features and to an improvement of detection performance using
a rule-based classifier. However, a reduction to only 24 features (out of 77) is
excessive for an autoencoder, which by design is able to perform dimensionality
reduction, as discussed in the following.

3 Proposed approach and dataset

3.1 Background on autoencoders

This study is based on the use of deep autoencoders, i.e., a specific type of
feedforward neural network where the input layer has the same length as the
output layer. The middle (hidden) layer of an autoencoder is also known as
the bottleneck layer and its dimension is lower than the input/output layer.
An autoencoder consists of two parts: encoder and decoder. Let x be a vector
of n real numbers [x1,x2,...,xn], such as the flow records representing network
traffic for the datasets used in the experiments. The encoder maps x to a code
vector – or hidden representation – y at the bottleneck layer. On the other
hand, the decoder transforms y into a vector of n, i.e., the same size of x,
real numbers z = [z1, z2, ..., zn]. Fig. 1 represents an autoencoder with three
hidden layers.

Encoding-decoding formulas are given in Eq. 1 and Eq. 2. They represent
the case of a “basic” autoencoder with only one hidden layer:

y = σ(Wx+ b) (1)

z = σ′(W ′y+ b′) (2)

where W , W ′, b and b′ are weight matrices and bias vectors, while σ and σ′

are activation functions.
An autoencoder compresses the input into a lower-dimensional represen-

tation at the bottleneck layer and then it reconstructs the output from the
representation. Deep learning can be applied to autoencoders. In particular,

Springer Nature 2021 LATEX template

8 Successful Intrusion Detection with a Single Deep Autoencoder

multiple hidden layers can be used to provide depth: the resulting network is
known as deep or stacked autoencoder [33].

In the autoencoder terminology, z is called the reconstruction of the input
vector x. In fact – once properly trained – the purpose of an AE is to “recon-
struct” the input at the output layer. The “goodness” of the reconstruction is
summarized by the reconstruction error (RE), which measures the difference
between the output z and the originating input x:

RE =
1

n

n∑
i=1

(zi − xi)
2 (3)

where zi and xi (with 1≤i≤n) denote the components of the output and input
vector, and n is the dimensionality.

3.2 Single autoencoder-based IDS approach

Our IDS proposal, differently from most work currently available in the liter-
ature, relies on the use of a single autoencoder network for the detection of
intrusions. In general, an autoencoder is trained by means of a given set of
points, i.e., the training set of a typical machine learning experiment. Each
point x of the training set is fed to the autoencoder, and weight matrices and
bias vectors, i.e., W , W ′, b and b′, are progressively adjusted in order to min-
imize the difference between x and its reconstruction z. After training, the
autoencoder will reconstruct accurately i.e., with low RE, future points “sim-
ilar” to those used for training. Based on this principle, in order to pursue
an IDS approach we train the autoencoder solely by means of normal (used
as a synonym for benign through the rest of the paper) data points, i.e., flow
records related to traffic collected under “normal” network operations (i.e., not
subject to any attack); after training, the autoencoder – embedding a model of
the “normal profile” – can identify any instance not conforming to the model
as a potential intrusion.

The reconstruction error is a convenient indicator to detect intrusions.
Since the autoencoder is trained using only normal data points, it will generate
(i) low RE (good reconstructions) for future normal inputs, and (ii) high RE
(bad reconstructions) for intrusions. In fact, when the autoencoder attempts
to process a data point – a flow record in this study – that deviates from
the norm, it will report an increment of the RE because it was not trained
to reconstruct intrusions. The approach adopted in this paper does not need
anomalies at training time and falls within the larger scope of semi-supervised
anomaly detection [34]. As for any anomaly detection technique assigning a
score (RE in this study) to the data points to be assessed, we rely on a cut-off
detection threshold to discriminate normal points from intrusions. In partic-
ular, intrusion detection is based on the use of the threshold value: the data
points producing RE values under the threshold are considered normal, and
those with REs above the threshold are marked as intrusions. The value of the
detection threshold is an outcome of the training phase: as such, it is inferred
from normal data points as described in Sect. 3.3.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 9

As previously said, the rationale underlying our approach is that any diver-
gence with respect to the “benign behavior” – learned by the autoencoder –
leads to a high reconstruction error, making it possible to recognize attack flow
records. We will not discuss here if an AE could be some sort of “universal”
detector. The issue is tough; however, at the state of the art there is evidence
that, even if an AE can be fooled by a hand-crafted or adversarial learning-
produced attack, it tends to behave better than supervised networks for unseen
attack flows (see for example the experiments reported in [35] and [5]).

3.3 Threshold selection method

The idea of leveraging a single and relatively simple neural network and to train
it with normal traffic (which makes it possible to detect intrusions because
of their divergence from the “normal” behavior the AE was trained on) is
indeed fascinating. In our previous proposals [35], the threshold was set in a
supervised manner, reserving a small part of the dataset in hand to obtain
an optimal balance between false positives (benign records with RE falling
over the threshold) and false negatives (attack records with RE under the
threshold). The results were encouraging (F1 score = 0.942), but lower than
those obtained by supervised detection methods [36]; a further improvement
exploiting three AEs led to better performance [37].

In this paper, thresholds are set in semi-supervised manner (without any
cognition of the attack flows during training) by considering the outliers pro-
duced in the reconstruction of the benign flows used in the training step. It
should be noted that there are several practical challenges that undermine the
selection of a suitable threshold in a semi-supervised training setting. Assem-
bling a “reliable” database of normal points for training purposes is a complex
matter. For example, normal points might be fraught by uncommon behav-
iors and/or outliers being accidentally included within the normal points. The
labeling might be imperfect, i.e., due to intrusions being occasionally labeled
as benign behaviors. In consequence, the idea behind our method is to clear
out as many “strange” – although normal – training points as possible before
computing the threshold: though belonging to normal data, spurious “out-of-
the-crowd” behaviors will be more similar to intrusions rather than to normal
points. An incorrectly selected threshold (either too low or too high) might
cause misclassifications.

The threshold is computed through a small (i.e., 10%) disjoint subset of
the training set, which we call the threshold set. The method is represented
in Fig. 2 and consists of the following steps:

1. AE training: the autoencoder undergoes the standard semi-supervised train-
ing procedure described above, which allows it to learn a profile of the
benign flow records;

2. outlier detection: an outlier detection algorithm is applied to the threshold
set in order to discriminate inliers from outliers;

Springer Nature 2021 LATEX template

10 Successful Intrusion Detection with a Single Deep Autoencoder

Fig. 2: Steps of the proposed threshold selection method.

3. RE computation: inliers and outliers are fed to the autoencoder to obtain
the corresponding REs, which produces two separate vectors: REIN and
REOUT of inliers and outliers, respectively;

4. threshold selection: the detection threshold is obtained through a sensitivity
analysis performed with REIN and REOUT .

At first, the threshold is initialized with the maximum RE in REOUT ; then,
the threshold is progressively lowered until it is found an “equilibrium” between
inliers and outliers, i.e., inliers whose RE is below the threshold against outliers
characterized by a RE above the threshold. In this study we use the isolation
forest [38], although the threshold selection method does not mandate a specific
outlier detection algorithm.

3.4 IDS evaluation metrics

The overall performance of our autoencoder-based IDS is measured by analyz-
ing the typical metrics of recall (R), precision (P), false positive rate (FPR),
and F1 score. The metrics are computed with a labeled test set, i.e., a set
of “held-out” benign and attack records, i.e., records not seen at all by the
autoencoder during the training phase. These metrics are computed as follows:

R =
TP

TP + FN
P =

TP

TP + FP
(4)

FPR =
FP

FP + TN
F1 score = 2 · P ·R

P +R
(5)

where True Positive (TP) and True Negative (TN) represent the records that
are correctly classified, while False Positives (FP) and False Negatives (FN)
indicate misclassifications. For example, TP is the set of attack points whose
RE is higher than the detection threshold; similarly, TN is the set of normal
points whose RE is lower than the threshold.

3.5 Dataset

The CICIDS2017 dataset consists of benign traffic synthesized by the abstract
behavior of 25 users mixed with malicious traffic from many common attacks.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 11

Table 1: The features of a network flow produced by CICFlowMeter.
Feature short Feature short Feature short

Flow ID f1 Fwd IAT Std f29 ECE Flag Count f57
Source IP f2 Fwd IAT Max f30 Down/Up Ratio f58
Source Port f3 Fwd IAT Min f31 Average Packet Size f59
Destination IP f4 Bwd IAT Total f32 Avg Fwd Segment Size f60
Destination Port f5 Bwd IAT Mean f33 Avg Bwd Segment Size f61
Protocol f6 Bwd IAT Std f34 Fwd Avg Bytes/Bulk f62
Timestamp f7 Bwd IAT Max f35 Fwd Avg Packets/Bulk f63
Flow Duration f8 Bwd IAT Min f36 Fwd Avg Bulk Rate f64
Total Fwd Packets f9 Fwd PSH Flags f37 Bwd Avg Bytes/Bulk f65
Total Backward Packets f10 Bwd PSH Flags f38 Bwd Avg Packets/Bulk f66
Total Len. of Fwd Packets f11 Fwd URG Flags f39 Bwd Avg Bulk Rate f67
Total Len. of Bwd Packets f12 Bwd URG Flags f40 Subflow Fwd Packets f68
Fwd Packet Len. Max f13 Fwd Header Len. f41 Subflow Fwd Bytes f69
Fwd Packet Len. Min f14 Bwd Header Len. f42 Subflow Bwd Packets f70
Fwd Packet Len. Mean f15 Fwd Packets/s f43 Subflow Bwd Bytes f71
Fwd Packet Len. Std f16 Bwd Packets/s f44 Init Win bytes forward f72
Bwd Packet Len. Max f17 Min Packet Len. f45 Init Win bytes backward f73
Bwd Packet Len. Min f18 Max Packet Len. f46 act data pkt fwd f74
Bwd Packet Len. Mean f19 Packet Len. Mean f47 min seg size forward f75
Bwd Packet Len. Std f20 Packet Len. Std f48 Active Mean f76
Flow Bytes/s f21 Packet Len. Variance f49 Active Std f77
Flow Packets/s f22 FIN Flag Count f50 Active Max f78
Flow IAT Mean f23 SYN Flag Count f51 Active Min f79
Flow IAT Std f24 RST Flag Count f52 Idle Mean f80
Flow IAT Max f25 PSH Flag Count f53 Idle Std f81
Flow IAT Min f26 ACK Flag Count f54 Idle Max f82
Fwd IAT Total f27 URG Flag Count f55 Idle Min f83
Fwd IAT Mean f28 CWE Flag Count f56

In order to create the dataset, the proposing group used a laboratory environ-
ment with attacker and victim networks. The attacker was a Kali Linux node
and the victim an Ubuntu 16.04 system running an Apache web server. The
data capture period started at 9 a.m., Monday, July 3, 2017, and ended at 5
p.m., Friday, July 7, 2017, for a total of 5 days. Monday is the “normal day”
and contains only benign traffic; in the morning and afternoon of Tuesday,
Wednesday, Thursday, and Friday, in addition to normal traffic, attacks were
performed. These attacks belong to the categories Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS. DoS
attacks hulk, slowloris, slowhttptest and goldeneye were performed and cap-
tured on “Wednesday”, i.e., the “DoS day”. The dataset is a flow-based one;
network flows are obtained by means of CICFlowMeter2, which derives from
a tool originally conceived to recognize the type of encrypted traffic and pro-
vides detailed information on the flow of packets occurring and their timing.
In particular, network flow records consist of categorical and numeric features
that provide context data and summary statistics computed from the packets
exchanged between a source computer and a destination across a network. Each
record of the dataset is a labeled flow, identified by 84 features (attack label
included). The label states if the record belongs to normal traffic or attacks.
Table 1 shows the 83 features associated with a flow by CICFlowMeter. It is
a fact that this information can be successfully exploited to recognize malign
flows, which is the primary aim of an IDS.

Extensive research on erroneously classified flows leads us to discover that
often the attack flows contained in CICIDS2017 do not really harm a correctly-
configured server [2] and that the flows produced by the original release of the
CICFlowMeter tool – commonly used in the context of IDS research – contain

2https://github.com/ahlashkari/CICFlowMeter

https://github.com/ahlashkari/CICFlowMeter

Springer Nature 2021 LATEX template

12 Successful Intrusion Detection with a Single Deep Autoencoder

inexplicable flows. These are actually fragments of an incorrectly truncated
flow. A patch to the latter issue was recently provided in [39], along with
a new version of both CICIDS2017 and CICFlowMeter: the experimentation
presented in this paper is based on the fixed version of CICIDS20173.

We consider 490,968 flow records related to normal traffic and Denial of
Service (DoS) attacks of the CICIDS2017 capture dating Wednesday, July 5,
2017. Overall, the records are split into three disjoint subsets used for training,
validation and test by a stratified sampling strategy with no replacement. This
means that the ratio between benign and attack classes of the total flow records
is preserved in the splits. Flow records are divided as follows:

• CICIDS-TRAINING: 70% of the total (i.e., 343,680) divided into 223,430
BENIGN and 120,250 ATTACK flow records. 10% of this set is the
“threshold set”, meant for the threshold selection process;

• CICIDS-VALIDATION: 15% of the total (i.e., 73,644), divided into 47,877
BENIGN and 25,767 ATTACK flow records;

• CICIDS-TEST: 15% of the total (i.e., 73,644), divided into 47,877 BENIGN
and 25,767 ATTACK flow records.

The learning process leverages training-validation sets. It must be noted
that attack records are removed from CICIDS-TRAINING and CICIDS-
VALIDATION according to the adopted semi-supervised learning approach.

4 Implementation and training issues

The autoencoder has been implemented in Python with the ubiquitous Keras
deep learning framework, which is backed by Tensorflow. As for any learning
experiment, we start with an initial set of parameters (e.g., number of lay-
ers, neurons per layers, activation functions, optimizer and epochs) to form
the autoencoder. The autoencoder is trained with CICIDS-TRAINING: the
IDS model and threshold obtained after training are tested with CICIDS-
VALIDATION in order to validate the choice of the parameters. The training-
validation step is iterated until the optimal parameters are found. It is worth
noting that CICIDS-TEST plays no role during training and validation, and
it is used to compute the results presented in Sect. 5 and 6. The AE imple-
mentation, the dataset splits used in the experiments and a pre-trained model
are publicly available on our website4.

As for the features adopted at this stage of the experimentation, it is worth
noting that out of the 83 features in Table 1, six of them (f1-f5, f7) must be
discarded outright for detection purposes. For example, the Flow ID (f1) does
not make any sense for detection; moreover, it is too easy to detect attack
flows in a dataset by leveraging the IP of the attacker (f2) or the victim (f4).
The initial set of experiments is thus conducted with the 77 features in Table
2, while the use of feature selection will be addressed in Sect. 6.

3https://downloads.distrinet-research.be/WTMC2021/tools datasets.html
4http://idsdata.ding.unisannio.it/tools.html

https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html
http://idsdata.ding.unisannio.it/tools.html

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 13

Table 2: Features used in the initial experiments.

77-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f38, f39, f40, f41, f42, f43,
f44, f45, f46, f47, f48, f49, f50, f51, f52, f53, f54, f55, f56, f57, f58, f59, f60, f61,
f62, f63, f64, f65, f66, f67, f68, f69, f70, f71, f72, f73, f74, f75, f76, f77, f78, f79,
f80, f81, f82, f83

Table 3: Parameters of the autoencoder.

neurons per layer N –48–24–8–24–48–N validation split 0.10
initializer RandomNormal shuffle True
regularizer default parameters batch size 1024
connection fully connected epochs 90
activation functions N/A, relu, relu, relu, relu, relu, tanh
optimizer rmsprop (default parameters)
loss function mean squared error

4.1 Parameter selection

In the following, we discuss our practices for setting up the autoencoder for
successful intrusion detection based on the data in hand. Given the input and
output layers (whose number of neurons is equal to the number of features
considered) it is necessary to choose a suitable form factor, i.e., the number of
hidden layers and neurons for each layer. Unfortunately, there are no rules to
guide this choice, and so the only way is to proceed by iterating the training-
validation step, as we did in this study.

Almost unexpectedly, we found out that the number of hidden layers is not
a particularly critical parameter. It is possible to obtain low RE with 3 hidden
layers or with 5 hidden layers as well. The main criticality is the number of
neurons at the bottleneck, which is intended to hold the encoded flow state.
In the case of network flows considered here the best results are obtained with
a bottleneck layer made of 6 up to 8 neurons. In the rest of the paper, we
will present results relative to a deep autoencoder with 5 hidden layers, each
consisting of 48–24–8–24–48 neurons implementing the rectified linear unit
(relu) activation function, as shown in Fig. 3.

The overall parameters of the autoencoder are reported in Table 3. The
number of neurons of the input-output layer is denoted by N and depends
on the number of features; the activation function of the output layer is the
hyperbolic tangent (tanh). The loss function is the mean squared error between
the output and input of the autoencoder: this matches the definition of the
reconstruction error (RE) presented above.

4.2 Issues with the training process

The training procedure of the autoencoder is straightforward once the dataset
has been suitably partitioned; more important, training is performed auto-
matically by the Keras-Tensorflow deep learning software. The weights of the

Springer Nature 2021 LATEX template

14 Successful Intrusion Detection with a Single Deep Autoencoder

Fig. 3: Representation of the 77-input 48-24-8-24-48 autoencoder.

neurons are typically assigned random values by the pseudorandom number
generator (PRNG) at the beginning of the training process. The seed is the
initial point of the sequence of values generated by the PRNG. In Keras-
Tensorflow the seed of the PRNG can be (i) either supplied by the user or (ii)
just left unspecified. If not specified, the seed of the PRNG is handled trans-
parently by the machine learning software at each program execution, which
means that subsequent training runs – let all the remaining parameters and
conditions fixed – will likely lead to different results.

Training consists in feeding CICIDS-TRAINING to the autoencoder in the
form of fixed-size batches (whose size is regulated by the batch size parameter)
for a given number of times (the number of epochs or simply epochs, for short,
parameter). While doing so, the deep learning software adjusts the weights of
the neurons by reducing progressively the loss function without user interven-
tion, setting aside a small ratio of reserved data to validate the optimization
actions performed – modifications of the weights in the network – so as to
signal overfitting. However, things are not so simple, due to issues that could
arise and that should be suitably considered in order to obtain good detection
results from the autoencoder:

• the seed of the PRNG: while we would expect a “negligible” variability of
the results from run to run due to not specifying the seed, this might not
be the case for a semi-supervised autoencoder for intrusion detection;

• different CPUs (or GPUs) will lead to different exploitation of the threads
used in the training phase and – at least in theory – might lead to different
weights of the neurons in the network;

• there is no guarantee that obtaining low loss values as a result of the training
phase leads to good intrusion detection performance.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 15

These three issues – overlooked by the related literature – are separately
dealt with in Sect. 5, so as to give practical advices for successful training of
an autoencoder to be used for intrusion detection purposes.

5 Results on the training process

The phenomena giving rise to inconsistent intrusion detection results are
described and proven experimentally across different seed values and comput-
ing platforms; moreover, we complement the experiments by a discussion on
the validity of relying on “low” loss values as indicators of successful training.
The experiments will answer these four research questions related to training
issues (TRAIN-RQs):

• TRAIN-RQ1: has the seed of the PRNG used at training time a valuable
effect on the autoencoder detection performance?

• TRAIN-RQ2: the weights of the autoencoder network produced are
dependent upon the hardware platform used for the training procedure?

• TRAIN-RQ3: the final value of loss obtained at training time is directly
correlated to the intrusion detection performance of the AE?

• TRAIN-RQ4: given a non-manageable effect of seed, hardware and loss
value on the AE intrusion detection performance, which is the suggested
learning procedure?

Both the experiments and RQs are supported by practical results obtained on
typical computing hardware platforms:

1. iMac model 14,1, 2,7 Ghz Intel Core i5 4-Core, 16GB RAM;
2. iMac model 19,1, 3 GHz Intel Core i5 6-Core, 16GB RAM;
3. workstation Lambda-VECTOR, 3.50 GHz AMD Ryzen Threadripper PRO

3975WX 32-Cores, GPU disabled;
4. workstation Lambda-VECTOR, 3.50 GHz AMD Ryzen Threadripper PRO

3975WX 32-Cores, NVIDIA RTX A5000 GPU.

In order to avoid any potential bias caused by the deep learning software,
all the tests that follow have been performed with Python 3.8.2, Tensorflow
2.8.0, Keras 2.8.0, Scikit-Learn 1.0.2.

5.1 Effect of the seed of the PRNG

The effect of the seed used to start the random sequence on the weights of the
neurons in the training phase is a relatively-well known phenomenon. If the
seed is not specified when the training starts, the obtained weights are different
across subsequent runs. One would accordingly aspect small variations in the
obtained network behavior. Unfortunately, it is not so. The intrusion detection
performance of the obtained networks will instead vary wildly with the seed.

Fig. 4 shows the effect of seed change in experiments performed on the plat-
forms 1) and 3) above. Given a value of the seed, the autoencoder is (i) trained

Springer Nature 2021 LATEX template

16 Successful Intrusion Detection with a Single Deep Autoencoder

(a) 2,7 GHz Intel Core i5 quad-core (b) 3,5 GHz AMD 3975WX 32-core

Fig. 4: F1 for different seed values.

with CICIDS-TRAINING, and (ii) tested with CICIDS-TEST in order to com-
pute R, P, F1 and FPR. It should be noted that the remaining parameters –
if not the seed – are fixed as per Table 3. We test the values of seed in 1000 to
1299 and the resulting detection performance with CICIDS-TEST (for sake of
simplicity summarized here by the sole F1 index) is plotted in the diagrams.
For each run, the specific value of the seed is set with the random.set seed(s)
function (with s denoting an integer) of TensorFlow. The results show a high
variability of F1, that sometimes falls down from “satisfactory” values close
to 1 down to 0.8 or even less. Furthermore, the plots obtained depend on the
hardware platform (more on this later).

Answer to TRAIN-RQ1: The effect of the seed cannot be ignored. The
detection capabilities of the AEs obtained with different values of seed present
significant variations, sometimes falling under acceptable performance levels.

5.2 Effect of the hardware platform

As previously mentioned, the effect of the seed is intertwined with the vari-
ability of the detection performance due to different hardware platforms. In
“no-GPU” systems, this is due to the use by the Tensorflow engine of a differ-
ent number of threads depending on the number of available cores. As a result,
the detection performance for the same seed value can be fairly different across
different CPUs. A draconian solution is to force Tensorflow to exploit a single
thread5.

On systems provided with GPUs (which are typically exploited by default
by Tensorflow) the problem is even tougher. In this case, not only the learning
behavior varies with the hardware used, but it gives non-deterministic results
on the same platform. Stated another way, each training on the same hardware
produces different weights and, in the end, different detection performance.
This phenomenon is a consequence of the non-additivity of floating point addi-
tions and of the use of asynchronous atomic sums in the Tensorflow run-time,
and cannot be avoided without serious performance losses. A complete report
on the status of Tensorflow non-determinism for NVIDIA GPUs can be found

5This can be obtained by calling tf.config.threading.set inter op parallelism threads(1) and
tf.config.threading.set intra op parallelism threads(1), but this is detrimental for learning times.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 17

Table 4: Classification performance for different architectures, seed=1134

Architecture R P F1 FPR training loss
2,7 GHz Intel Core i5 4-core 0.988 0.976 0.982 0.013 1.3240e-04
3 GHz Intel Core i5 6-core 0.802 0.977 0.881 0.0102 1.4006e-04
3,5 GHz AMD 3975WX 32-core 0.871 0.972 0.919 0.013 1.2080e-04
NVIDIA RTX A5000 (1) 0.785 0.983 0.873 0.007 1.2453e-04
NVIDIA RTX A5000 (2) 0.758 0.974 0.853 0.011 1.2768e-04
NVIDIA RTX A5000 (3) 0.991 0.968 0.979 0.018 1.2326e-04
NVIDIA RTX A5000 (4) 0.986 0.979 0.983 0.011 1.2087e-04
NVIDIA RTX A5000 (5) 0.498 0.960 0.656 0.011 1.1845e-04

on github6. The implication of this non-deterministic behavior is that a “suc-
cessful” training (i.e., leading to good detection results) is not repeatable, and
so the produced model has to be saved beforehand to be exploited in the future,
if it gives good results at testing time.

Fig. 5 shows the plots of the reconstruction error for the records in CICIDS-
TEST obtained with the same seed value – 1134, a “fairly good value” for
platform 1) – of the four platforms at hand. The test has been executed multi-
ple times on the GPU system to confirm the non-deterministic behavior. It is
possible to see at a glance the extreme variability of the performance obtained,
which ranges from very good (a, f, g) to decent (d, e) to absolutely unsat-
isfactory (h), which means the autoencoder generates a reconstruction error
below the detection threshold for a significant number of attack records of
CICIDS-TEST (thus classified as benign). For the sake of completeness, Table
4 shows the details of the performance results (recall, precision, F1 value, FPR)
obtained in the eight experiments. The rows of Table 4 correspond orderly to
the eight subfigures of Fig. 5, (a) to (h). The rightmost column of the table also
shows the final values of the training loss obtained after the 90 epochs consis-
tently used for training the eight networks. These values will be considered in
the next subsection.
Answer to TRAIN-RQ2: The hardware platform has a non-negligible effect
on the AE network obtained. Different CPUs lead to different trained networks.
Moreover, on systems provided with GPU, the outcome of the training step
is non-deterministic. This issue affects the final AE detection performance as
well.

5.3 Considerations on the final loss value

Training aims to reduce the loss value through a given number of optimiza-
tion steps (again, epochs). Our experimentations, a small subset of which is
reported here, clearly point out that all potential training attempts on the same
input data lead to fairly similar loss values. Whatever the hardware used or
the random seed, it works. The bad surprise is that at equal values of training
losses do not reflect into equal abilities to detect attack flow records.

The analysis of the final loss values (i.e., the loss values at the comple-
tion of the training step) reported in the rightmost column of Table 4 shows

6https://github.com/NVIDIA/framework-determinism

https://github.com/NVIDIA/framework-determinism

Springer Nature 2021 LATEX template

18 Successful Intrusion Detection with a Single Deep Autoencoder

(a) 2,7 GHz Intel Core i5 4-core (b) 3 GHz Intel Core i5 6-core

(c) 3,5 GHz AMD 3975WX 32-core (d) NVIDIA RTX A5000 (1)

(e) NVIDIA RTX A5000 (2) (f) NVIDIA RTX A5000 (3)

(g) NVIDIA RTX A5000 (4) (h) NVIDIA RTX A5000 (5)

Fig. 5: Reconstruction error with the test set for different architectures,
seed=1134.

that lower losses do not necessarily correspond to higher detection perfor-
mance. For example, it can be noted that the best configuration presented –

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 19

NVIDIA RTX A5000 (4), the one corresponding to subfigure (g) in Fig. 5 –
is characterized by a loss value (1.2087e-04) higher than the one of configura-
tion NVIDIA RTX A5000 (5), subfigure (h), (1.1845e-04) offering very poor
detection performance.

The reconstruction error (or the mean squared error measured by Keras,
which is the same) is a mean of squares, extended to all the features fed to the
autoencoder. The loss being equal, the contributions of the single features may
be distributed differently. Possibly, one of the non-deterministic distribution of
weights might lead to high error on the features that are most fit to recognize
a given type of attack. There is no possible solution, as the attempt to provide
an “universal” detector makes it impossible to assign higher weights to some
of the features when computing the loss, simply because we do not know what
could be the most relevant features for an unknown or new type of attack.

Answer to TRAIN-RQ3: The loss value obtained at the end of the training
step is not directly linked to the quality of the AE obtained; lower losses do
not necessarily correspond to higher detection performance.

5.4 Suggested learning procedure

The experiments presented in the preceding subsections have shown that many
factors influence the detection performance of the AE in a non-negligible way.
The non-determinism characterizing the learning procedure of neural networks
does not necessarily allow to settle the weights in a satisfactory final state.
Furthermore, the influencing factors are not under the control of the developer
at learning time, as they appear to be linked to the development platform
(Keras-Tensorflow) and not to the AE model itself. Further research is indeed
necessary on this topic, which appears beyond the scope of this paper at the
time. Deep autoencoders may be a great solution for intrusion detection, but
they require a multiple-step learning procedure that could allow to discard
“unfortunate”, poorly-performing, AEs.

Our suggestion for obtaining satisfactory detection performance from the
AE is to repeat the learning multiple times on the same hardware environment,
checking the behavior of the autoencoders obtained from a not-too-narrow set
of seeds using a (labeled) subset of the dataset. Once a sufficiently good seed
for a given platform has been found, it has to be fixed for successive learnings
or – better, in light of the GPU issues mentioned above – the model saved
once and for all, and used as-it-is. However, it is clear that this process leads
to a detector able to manage at best the attacks of the dataset in hand, but
that possibly could be less successful for different types of attack.

Answer to TRAIN-RQ4: Given the uncertainty on the actual AE detection
capabilities linked to non-deterministic training factors, it is convenient to
reserve a validation subset of the dataset for choosing among the AEs obtained
in correspondence of a sufficiently large set of seeds. If GPUs are used, every
model obtained has to be saved, because the learning process performed is
non-repeatable.

Springer Nature 2021 LATEX template

20 Successful Intrusion Detection with a Single Deep Autoencoder

6 Results on the use of feature selection

Feature selection techniques are widely used in intrusion detection. They allow
discarding the features that are either redundant or not significantly contribut-
ing to the classification. It should be noted that an autoencoder per se performs
a dimensionality reduction as described in Sect. 3: in consequence – at least
in theory – applying a preliminary feature selection “before” the autoencoder
might seem redundant. However, given the problems linked to the mean of
squares used to compute the loss discussed in Subsect. 5.3, a feature selection
could possibly help to obtain (being equal to the final loss) an AE better tuned
to the “significant” features and it is worth a try. Moreover, out of the features
listed in Table 2, it is very unlikely that all of them are useful for intrusion
detection; for example, a few ones are constant through all the dataset and so
have no utility for classification. In any case it should be borne in mind that,
without knowing the characteristics of the attacks, it is not possible to know
which features can be useful for attack flow recognition or not.

In order to understand the role of feature selection in the context of an AE-
based IDS, we assess three methods, i.e., ANOVA f-test, Mutual information
statistic and Random forest. The experiments presented in the following aim
to uncover the relevance of the features with respect to the DoS attacks listed
in 3.5, the intertwinement between feature selection and the variability of the
results caused by the seed, and the effect on IDS performance. Overall, they
can be synthesized in the following research questions (FEATSEL-RQs):

• FEATSEL-RQ1: is the relevance of the features the same for every adopted
technique and for any type of attack?

• FEATSEL-RQ2: discarding less relevant features makes the seed less
influential on the intrusion detection performance of the AE?

• FEATSEL-RQ3: discarding less relevant features leads to better intrusion
detection performance of the AE?

6.1 Analysis method and feature selection techniques

Feature selection can be performed by either supervised or unsupervised meth-
ods, depending on whether the label of the data points (if any) is used or not,
respectively. Unsupervised feature selection is based on the examination of a
set of flow records, without knowing if they are benign (normative) or malign
(attacks). Most typically, clustering techniques are exploited. Due to the fairly
high dimensionality of the flow records, we chose the more straightforward
supervised techniques, which capitalize on the label (BENIGN or ATTACK).
Moreover, consistently with the choice to avoid the use of attack data – even in
this tuning phase, our AE never sees the attack flows of the reference dataset
– we used the flow records taken from a different dataset, i.e., USB-IDS-1.

USB-IDS-1 is a novel synthetic intrusion dataset developed at the Univer-
sity of Sannio at Benevento (USB), Italy, and freely downloadable for research

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 21

use7. It contains normal http traffic, along with DoS attacks to an Apache web
server carried out by means of publicly-available DoS scripts and command
line utility programs widely used by the security community. In particular, the
attacks available in the dataset are the well known Hulk, Slowhttptest, Slowloris
and TCPFlood. This makes the USB-IDS-1 dataset similar – as far as the type
of DoS attacks performed is concerned – to the CICIDS2017 Wednesday cap-
ture used in this paper. The details on the collection of USB-IDS-1 and the
attacks performed can be found in [14].

As for the supervised feature selection techniques adopted, they are
ANOVA f-test, Mutual information statistic and Random forest. The first two
are filter methods, in that they use statistical techniques to evaluate the rela-
tionship between each feature and the target variable (the label of the flow
record), and use the obtained scores to discard the features less useful to pre-
dict the target. ANOVA is based on the analysis of variance, whereas the
Mutual information test is based on information gain. On the other hand,
Random forest is an embedded method, in that feature selection is obtained
as part of learning a data model. Describing the feature selection methods is
out of the scope of this paper. The interested reader is referred to the survey
papers mentioned in Sect. 2.

6.2 Relevant features by technique and attack

In the following, we leverage the feature selection techniques to find out the
most relevant features among those listed in Table 2. The techniques have been
implemented with Scikit-learn: they are used to analyze the following subsets
of the USB-IDS-1 dataset: i) normal traffic plus Hulk attack data, ii) normal
traffic plus Slowhttptest attack data, iii) normal traffic plus Slowloris attack
data, iv) normal traffic plus TCPFlood attack data. Fig. 6 shows the obtained
results, in the form of histograms reporting the score (y-axis) of the 77 features
(x-axis). Higher score means higher contribution to the classification of the
flow as an attack. As it can be seen at a glance comparing the histograms, the
set of the most relevant features depends on the feature selection technique,
and it is not uniform across all types of attack.

Answer to FEATSEL-RQ1: There no “uniform” view of the most relevant
features across the three feature selection techniques, and the most relevant
features to be used for detection vary with the type of attack.

Selecting only some of the 77 features makes the detector lose “univer-
sality”, as (at least in principle) unknown attacks could be spotted by the
discarded features. This possibly suggests that only the use of the full feature
set can help to recognize never-seen-before attacks (0-day).

6.3 Feature selection and effect of the seed

In order to address FEATSEL-RQ2, we discard the lowest-ranked 10, 20 and
30 features, obtaining “reduced” sets of 67, 57 and 47 features, respectively,

7http://idsdata.ding.unisannio.it/

Springer Nature 2021 LATEX template

22 Successful Intrusion Detection with a Single Deep Autoencoder

(a) Hulk-anova (b) Hulk-mutual (c) Hulk-rndforest

(d) Slowhttptest-anova (e) Slowhttptest-mutual (f) Slowhttptest-rndforest

(g) Slowloris-anova (h) Slowloris-mutual (i) Slowloris-rndforest

(j) TCPFlood-anova (k) TCPFlood-mutual (l) TCPFlood-rndforest

Fig. 6: Scores of the 77 features by technique: Hulk, Slowhttptest, Slowloris,
TCPFlood attacks from the USB-IDS-1 dataset.

as shown in Table 5. It is worth noting that the first 10 features discarded
are constant in the CICIDS2017 dataset, and so surely give no contribution

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 23

Table 5: Subsets of features used in experiments

67-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46,
f47, f48, f49, f50, f51, f52, f53, f54, f55, f57, f58, f59, f60, f61, f68, f69, f70, f71,
f72, f73, f74, f75, f76, f77, f78, f79, f80, f81, f82, f83

57-features set
f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46,
f47, f48, f49, f50, f51, f52, f53, f54, f55, f57, f58, f59, f60, f61, f68, f70, f71, f72,
f73, f75

47-features set
f6, f8, f9, f10, f11, f12, f13, f15, f16, f17, f19, f20, f21, f22, f23, f24, f25, f27, f28,
f29, f30, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f46, f47, f48, f49, f50, f51,
f53, f54, f58, f59, f60, f61, f71, f72, f73, f75

Fig. 7: Boxplot of F1 values for 77, 67, 57 and 47 feature sets.

to predict the label (BENIGN or ATTACK). Stated another way, they are
non-informative variables that can potentially affect the effectiveness of the
detector.

The experiment presented in 5.1 is repeated on platform 1) using the sets
of features above. Given a set of features and the range of seeds 1000-1299,
the autoencoder is (i) trained with CICIDS-TRAINING, and (ii) tested with
CICIDS-TEST: the resulting F1 score on the test set recorded. It should be
noted that – if not the seed – the parameters of the autoencoder are those in
Table 3; N , i.e., the number of neurons of the input-output layers, is adjusted
case-by-case and set to the number of features.

The boxplots in Fig. 7 show the F1 score obtained switching from the full
feature set (F77) to the sets with 67, 57 and 47 (F67, F57, F47 in Fig. 7,
respectively). Each boxplot summarizes 300 F1 scores. Interestingly, the lowest
dispersion is obtained by the 67-feature set, where – trivially, with no specific

Springer Nature 2021 LATEX template

24 Successful Intrusion Detection with a Single Deep Autoencoder

Table 6: Classification performance of the feature sets

77-features set 67-features set 57-features set 47-features set
R 0.988 0.987 0.986 0.987
P 0.976 0.982 0.984 0.987
FPR 0.013 0.009 0.008 0.007
F1 0.982 0.984 0.985 0.987

selection technique – the constant features were discarded. The 57- and 47-
features sets perform worse, with higher dispersion and lowest median of F1
scores. Hence the answer to FEATSEL-RQ2:

Answer to FEATSEL-RQ2: Applying feature selection “before” the
autoencoder does not help to obtain a more stable behavior or to make the
seed less influential on intrusion detection; the less the features, the higher the
dispersion of the F1 score.

6.4 Feature selection and IDS performance

We now consider the IDS detection performance with feature selection, so as to
answer RQ3. It turns out that, although feature selection does not mitigate the
variability caused by the seed, it can help a bit to achieve good classification
performance. Table 6 shows the P, R, FPR and F1 values obtained on the
same platform (i.e., platform 1) of Sect. 5) with a different set of features; the
best performance is obtained with the 47-features set, with seed = 1062. Most
notably, the reduction of features makes it possible to halve the false positive
rate.

In Figg. 8, 9, 10 and 11 we present the corresponding plots of RE over
the test set and the confusion matrices, for each of the AE instances in Table
6. Even if the plots are very similar, on close examination subtle differences
appear in the reconstruction error obtained for the different subsets of norma-
tive data. This led to slight performance improvement that characterizes the
47-features AE, signaled by the reduced false positive rate. Perhaps further
tuning could help to obtain a slightly higher performance, but at these levels
of precision and recall, it is likely to be simply a waste of time, since the mis-
classified flows are only 674 (i.e, 329 + 345 in Fig. 11) on a total of 73,644 test
flows. Moreover, many of these misclassified flows are “tails” of long-duration
flows (namely, those generated by slow DoS attacks) that have been truncated
after the standard CICFlowMeter timeout of 120 s. This problem is well known
and has been recently fixed in a further dataset derived from CICIDS2017 [40].

Answer to FEATSEL-RQ3 : Discarding less relevant features leads to
marginal improvements of the intrusion detection performance of the AE;
moreover, it is questionable if the marginal improvements obtained can be
traded-off for a potential bad classification performance on “unseen” (e.g.,
0-day) attacks.

The set of features obtained after selection is biased by the attacks available
in the dataset adopted; unseen attacks (i.e., those not present in the dataset
used to compute the feature rankings) may require a different set of features.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 25

Fig. 8: Reconstruction error and confusion matrix of the 77-features AE.

Fig. 9: Reconstruction error and confusion matrix of the 67-features AE.

Fig. 10: Reconstruction error and confusion matrix of the 57-features AE.

Fig. 11: Reconstruction error and confusion matrix of the 47-features AE.

In our opinion, the decision on whether to use the full feature set or just a
subset depends on the frequency and the scope of 0-day attacks suffered.

Springer Nature 2021 LATEX template

26 Successful Intrusion Detection with a Single Deep Autoencoder

7 Threats to validity

As for any data-driven study – especially if based on the use of machine and
deep learning – there may be concerns regarding the validity and generaliz-
ability of the results. We discuss them based on four aspects of validity listed
in [41].

Construct validity. The study builds around the intuition that a single
autoencoder – if properly trained – can be successfully used for semi-supervised
intrusion detection. The approach has the potential to inspire general IDS
solutions that do not require attacks at training time. The construct is mea-
sured and investigated through a large experimental campaign based on the
ubiquitous Keras-Tensorflow deep learning framework, different hardware plat-
forms involving both CPUs and GPUs, and a widely-accepted benchmark by
the related literature, i.e., the CICIDS2017 dataset (in particular, a recent
fix of the dataset) supplemented by the additional dataset USB-IDS-1. The
construct is assessed by considering both the training issues of a deep neu-
ral network and the use of feature selection. Overall, the study is supported
by well-founded theory and practice, and standard evaluation metrics (recall,
precision, false positive rate, F1 score).

Internal validity. Our study implements several countermeasures aim-
ing to mitigate internal validity threats. For example, we made sure to test
our autoencoder-based IDS by means of held-out data, i.e., not used at all
for training and hyperperameters optimization. Experiments were replicated
many times in order to account for the effect of the randomization of some
training facets – initialization of neurons and training data shuffling – depend-
ing on the seed of the PNRG; moreover, experiments were replicated across
different hardware platforms. As for feature selection, we based our considera-
tions on three techniques, i.e., ANOVA f-test, Mutual information statistic and
Random forest. The datasets adopted provide DoS activity generated through
state-of-the-art attack tools, e.g., hulk and slowhttptest. The attacks are based
on well-established tools and are typically used to validate IDS proposals;
more importantly, the training of the autoencoder – semi-supervised – is not
biased by specific attack types. The use of such a diverse mixture of controlled
conditions and techniques aims to mitigate internal validity threats.

Conclusion validity. The conclusions of the study are consistent along
the different dimensions of our experiments, which makes our finding per-
fectly reasonable and technically sound. For example, the variability of the
IDS results caused by the seed of the PRNG is confirmed over different hard-
ware platforms; moreover, the conclusion that the hardware platforms can
affect the results – let the seed fixed – was inferred by running the same
training-test experiment by using both standard computers and a full-fledged
workstation featuring both CPUs and GPUs. We made sure to factor-out the
non-determinism of the GPUs to confirm our conclusion was correct. Feature
selection is based on three techniques: the conclusion that relevant features
vary from attack to attack is consistent across all the techniques assessed.
The interplay between the effect of the seed and the number of features is

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 27

also confirmed through experiments performed by lowering the number of fea-
tures. Overall, the conclusions were inferred through a careful design of the
experiments and by assessing the sensitivity of key results.

External validity. Our study can be replicated and applied to other types
of neural networks, hardware platforms and attacks. Nowadays, there exist
many deep learning frameworks and public repositories of neural networks and
IDS datasets, which make our approach definitively feasible in practice. Our
analysis approach does not interfere with system operations. There exist many
products for capturing network packets and generating fixed-length records,
which allow porting our method to other systems. In fact, in this paper we
conducted our study with different hardware platforms by leveraging two inde-
pendent datasets – providing data on several DoS attacks – collected within
different network environments and published by different research teams.
We are confident that the experimental details provided in the paper would
support the replication of our study by future researchers and practitioners.

8 Lessons learned and conclusion

Semi-supervised learning approaches appear to be an interesting solution, since
they alleviate the problem of the collection of training data. An autoencoder
can be conveniently trained only by means of benign network traffic in order
to learn a semi-supervised IDS model. The resulting autoencoder-based IDS
is capable of detecting unknown types of attacks, simply because their pat-
terns deviate from the learned normal patterns. Although various autoencoder
models – often combined in complex architectures – have shown to be effec-
tive in detecting attacks, identifying the optimal model architecture to provide
the best detection performance requires tremendous effort, and this hinders
its practical application to IDS.

In this paper we have explored the use of a single autoencoder to classify
network flows for intrusion detection purposes. We have presented the results
of several years of research on this topic, the lessons learned and the open
research issues. It is worth summarizing the main lessons learned throughout
our research on AE for network flow classification:

• the seed used to start the random sequence generation matters, in that it
leads to different trained models; therefore, the effect of the seed cannot be
ignored. Successful intrusion detection requires checking the autoencoders
obtained from a not-too-narrow set of seeds;

• if the AE is developed by Keras-Tensorflow, the trained models obtained
with the same training data on different computing systems (alternative
CPUs or GPUs) are likely to differ. The implication of this non-deterministic
behavior is that a “successful” training is not repeatable, and so the pro-
duced model has to be saved beforehand to be exploited in the future, if it
gives good results at testing time;

• trained models characterized by similar values of loss can be very different as
far as their classification performance is concerned. Hence, multiple models

Springer Nature 2021 LATEX template

28 Successful Intrusion Detection with a Single Deep Autoencoder

should be produced and suitably tested on a validation subset of the dataset
so as to make it possible to choose the one with the best performance;

• a rigorous feature selection procedure requires information on the attacks to
be detected. If this information is available, discarding scarcely significant
features can improve classification accuracy. However, this is obtained at the
expense of possible accuracy losses on zero-day attacks.

• applying feature selection “before” the autoencoder does not help to obtain
a more steady behavior or to make the seed less influential on intrusion
detection; the less the features, the higher the dispersion of the F1 score.

In our opinion, resorting to a single “basic” AE without any assistance
from other neural networks or complex feature selection methods is a clear
advantage in terms of simplicity of training and tuning, and use of process-
ing power at recognition time. Another strong point of our solution is a good
adaptability to unknown attacks, as only feature selection – which is just an
option, not a strict requirement – requires a minimum notion of the attacks
to be detected. A solution as ours requires no powerful or specialized proces-
sor, and is amenable to processing large quantities of data in real-time. This
is why we claimed in a companion paper [7] that “simpler is better” and pro-
mote the use of a single autoencoder in future IDS designs. Our figures are
comparable with the results obtained on the CICIDS2017 or similar datasets
by supervised methods [16] or by AEs as components of more complex clas-
sification architectures. For example, the authors of HELAD system [26] –
autoencoder combined with a long short-term memory – achieve an F1 score
of 0.995. The performance is even worse – F1 score of 0.955 for DoS slowloris –
for the approach using memory-augmented deep auto-encoder (MemAE) [42].
The already mentioned classifier assisted with aggressive feature reduction [32]
performs better, but at the cost of large set-up times. Moreover, the ability of
a rule-based classifier at detecting previously-unseen attacks is questionable.

The accuracy results obtained on the CICIDS2017 dataset leave little room
for further improvements. Our future research will be oriented to the study
of a training procedure and to the production of normal training data able to
pave the way to the set up of an autoencoder able to recognize even unseen
attack flows with reasonable performance figures. Our long-term objective is to
give a set of guidelines and best practices able to leverage on a perfect balance
between the theory and practice on autoencoders for intrusion detection. In
the future, we will also extend our analysis to further datasets and attacks by
also considering the rapidly-evolving IoT environments.

Author contribution

Marta Catillo, Antonio Pecchia and Umberto Villano contributed equally to
this work.

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 29

Funding declaration

No funding to report.

Data availability

Publicly available datasets were analyzed in this study. The datasets can be
found at the URLs mentioned in the paper.

Conflict of interest

The authors declare no competing interests.

References

[1] Dina, A.S., Manivannan, D.: Intrusion detection based on machine learn-
ing techniques in computer networks. Internet of Things 16, 100462
(2021)

[2] Catillo, M., Pecchia, A., Rak, M., Villano, U.: Demystifying the role of
public intrusion datasets: a replication study of DoS network traffic data.
Computers & Security 108, 102341 (2021)

[3] Verkerken, M., D’Hooge, L., Wauters, T., Volckaert, B., De Turck,
F.: Towards model generalization for intrusion detection: Unsupervised
machine learning techniques. Journal of Network and Systems Manage-
ment 30, 12 (2021)

[4] Apruzzese, G., Pajola, L., Conti, M.: The cross-evaluation of machine
learning-based network intrusion detection systems. IEEE Transactions
on Network and Service Management 19(4), 5152–5169 (2022)

[5] Catillo, M., Del Vecchio, A., Pecchia, A., Villano, U.: Transferability of
machine learning models learned from public intrusion detection datasets:
the CICIDS2017 case study. Software Quality Journal 30, 955–981 (2022)

[6] de Carvalho Bertoli, G., Alves Pereira Junior, L., Saotome, O., dos San-
tos, A.L.: Generalizing intrusion detection for heterogeneous networks: A
stacked-unsupervised federated learning approach. Computers & Security
127, 103106 (2023)

[7] Catillo, M., Pecchia, A., Villano, U.: Simpler is better: On the use of
autoencoders for intrusion detection. In: Quality of Information and
Communications Technology, pp. 223–238. Springer (2022)

[8] Zhang, Y., Lee, W., Huang, Y.: Intrusion detection techniques for mobile
wireless networks. Wireless Networks 9(5), 545–556 (2003)

Springer Nature 2021 LATEX template

30 Successful Intrusion Detection with a Single Deep Autoencoder

[9] Kilincer, I.F., Ertam, F., Sengur, A.: Machine learning methods for cyber
security intrusion detection: Datasets and comparative study. Computer
Networks 188, 107840 (2021)

[10] Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey
of network-based intrusion detection data sets. Computer & Security 86,
147–167 (2019)

[11] Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization.
In: Proc. International Conference on Information Systems Security and
Privacy, pp. 108–116. SciTePress (2018)

[12] Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for net-
work intrusion detection systems (UNSW-NB15 network data set). In:
Proc. International Conference Military Communications and Information
Systems Conference, pp. 1–6. IEEE (2015)

[13] Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Garćıa-Teodoro,
P., Therón, R.: UGR’16: A new dataset for the evaluation of
cyclostationarity-based network IDSs. Computer & Security 73, 411–424
(2017)

[14] Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U.: USB-IDS-
1: A public multilayer dataset of labeled network flows for IDS evaluation.
In: Proc. International Conference on Dependable Systems and Networks
Workshops, pp. 1–6. IEEE (2021)

[15] Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proc.
International USENIX Conference on System Administration, pp. 229–
238. USENIX Association (1999)

[16] Panigrahi, R., Borah, S., Bhoi, A.K., Ijaz, M.F., Pramanik, M., Jhaveri,
R.H., Chowdhary, C.L.: Performance assessment of supervised classifiers
for designing intrusion detection systems: A comprehensive review and
recommendations for future research. Mathematics 9(6), 690 (2021)

[17] Taher, K.A., Mohammed Yasin Jisan, B., Rahman, M.M.: Network intru-
sion detection using supervised machine learning technique with feature
selection. In: Proc. International Conference on Robotics, Electrical and
Signal Processing Techniques, pp. 643–646. IEEE (2019)

[18] Wei-Chao, L., Shih-Wen, K., Chih-Fong, T.: CANN: An intrusion detec-
tion system based on combining cluster centers and nearest neighbors.
Knowledge-Based Systems 78, 13–21 (2015)

[19] Jiang, J., Han, G., Liu, L., Shu, L., Guizani, M.: Outlier detection

Springer Nature 2021 LATEX template

Successful Intrusion Detection with a Single Deep Autoencoder 31

approaches based on machine learning in the Internet-of-Things. IEEE
Wireless Communications 27(3), 53–59 (2020)

[20] Kramer, M.A.: Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE Journal 37(2), 233–243 (1991)

[21] Kunang, Y.N., Nurmaini, S., Stiawan, D., Zarkasi, A., Firdaus, Jasmir:
Automatic features extraction using autoencoder in intrusion detection
system. In: Proc. International Conference on Electrical Engineering and
Computer Science, pp. 219–224. IEEE (2018)

[22] Wu, J., Wu, Y., Niu, N., Zhou, M.: MHCPDP: multi-source heteroge-
neous cross-project defect prediction via multi-source transfer learning
and autoencoder. IEEE Pervasive Computing 29(2), 405–430 (2021)

[23] Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: An ensem-
ble of autoencoders for online network intrusion detection. In: Proc.
International Conference of Network and Distributed System Security
Symposium (2018)

[24] XuKui, L., Wei, C., Qianru, Z., Lifa, W.: Building auto-encoder intrusion
detection system based on random forest feature selection. Computers &
Security 95, 101851 (2020)

[25] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breiten-
bacher, D., Elovici, Y.: N-BaIoT-network-based detection of IoT botnet
attacks using deep autoencoders. IEEE Pervasive Computing 17(3), 12–22
(2018)

[26] Zhong, Y., Chen, W., Wang, Z., Chen, Y., Wang, K., Li, Y., Yin, X.,
Shi, X., Yang, J., Li, K.: HELAD: A novel network anomaly detection
model based on heterogeneous ensemble learning. Computer Networks
169, 107049 (2020)

[27] Chandrashekar, G., Sahin, F.: A survey on feature selection methods.
Computers & Electrical Engineering 40(1), 16–28 (2014)

[28] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu,
H.: Feature Selection: A Data Perspective. ACM Comput. Surv. 50, 1–45
(2018)

[29] Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning:
A new perspective. Neurocomputing 300, 70–79 (2018)

[30] Solorio-Fernández, S., Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F.: A
review of unsupervised feature selection methods. Artificial Intelligence
Review 53(2), 907–948 (2020)

Springer Nature 2021 LATEX template

32 Successful Intrusion Detection with a Single Deep Autoencoder

[31] Binbusayyis, A., Vaiyapuri, T.: Comprehensive analysis and recommenda-
tion of feature evaluation measures for intrusion detection. Heliyon 6(7),
04262 (2020)

[32] Kshirsagar, D., Kumar, S.: An efficient feature reduction method for the
detection of DoS attack. ICT Express 7(3), 371–375 (2021)

[33] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research
11, 3371–3408 (2010)

[34] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey.
ACM Comput. Surv. 41(3), 15 (2009)

[35] Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-
IDS anomaly detector. Journal of High Speed Networks 25(4), 349–365
(2019)

[36] Maseer, Z.K., Yusof, R., Bahaman, N., Mostafa, S.A., Foozy, C.F.M.:
Benchmarking of machine learning for anomaly based intrusion detection
systems in the CICIDS2017 dataset. IEEE Access 9, 22351–22370 (2021)

[37] Catillo, M., Rak, M., Villano, U.: 2L-ZED-IDS: A two-level anomaly
detector for multiple attack classes. In: Web, Artificial Intelligence and
Network Applications, pp. 687–696. Springer (2020)

[38] Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: Proc. International
Conference on Data Mining, pp. 413–422. IEEE (2008)

[39] Engelen, G., Rimmer, V., Joosen, W.: Troubleshooting an intrusion detec-
tion dataset: the CICIDS2017 case study. In: Proc. Security and Privacy
Workshops, pp. 7–12 (2021). IEEE

[40] Rosay, A., Carlier, F., Cheval, E., Leroux, P.: From CIC-IDS2017 to
LYCOS-IDS2017: A corrected dataset for better performance. In: Proc.
International Conference on Web Intelligence, pp. 570–575. ACM (2021)

[41] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in Software Engineering: An Introduction. Kluwer
Academic (2000)

[42] Min, B., Yoo, J., Kim, S., Shin, D., Shin, D.: Network anomaly detection
using memory-augmented deep autoencoder. IEEE Access 9, 104695–
104706 (2021)

	Introduction
	Related work
	Proposed approach and dataset
	Background on autoencoders
	Single autoencoder-based IDS approach
	Threshold selection method
	IDS evaluation metrics
	Dataset

	Implementation and training issues
	Parameter selection
	Issues with the training process

	Results on the training process
	Effect of the seed of the PRNG
	Effect of the hardware platform
	Considerations on the final loss value
	Suggested learning procedure

	Results on the use of feature selection
	Analysis method and feature selection techniques
	Relevant features by technique and attack
	Feature selection and effect of the seed
	Feature selection and IDS performance

	Threats to validity
	Lessons learned and conclusion

