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Abstract—The rapidly spreading cloud computing paradigm
delegates to the network the provision of most resources, even
those strictly linked to hardware as storage and CPU time. This
approach enables the development of applications which may
exploit a variable amount of resources in a flexible way, so as
to satisfy the actual load of requests coming from the users. A
side effect of such flexibility is that optimization has to be more
focused on user-perceived performance indexes than on resource
usage. This paper takes a step in this direction, presenting
the design and development of CHASE, an autonomic engine
designed to optimize the scheduling of virtual machines in a cloud
environment. The paper illustrates the CHASE architecture and
its application in two different contexts: in PerfCloud, an environ-
ment for IaaS provision based on cloud and grid integration, and
inside Cloud@Home, a project whose objective is to build a cloud
using volunteer-based resources. Some preliminary experimental
results based on HPC applications are presented.

I. INTRODUCTION

Since its inception, cloud computing [1] is evolving at

a steady pace, putting itself forward as a convenient way

for structuring and deploying applications and infrastructures

both in the commercial and in the academic world. As a

matter of fact, the crosscutting nature of the cloud paradigm

(“everything as a service”) has promoted its diffusion into

many different areas of computer engineering, ranging from

applications (Software-as-a-Service) to development platforms

(Platform-as-a-Service) to the provisioning of basic com-

puting resources as processing units, storage and networks

(Infrastructure-as-a-Service). As a result, potentially the entire

design space associated to many engineering problems has

to be restructured. Previously accepted solutions may have

to be adapted to take into account the nature of cloudified

computation. In the HPC context, for example, we see grids

and clouds converging into unified architectures where the

very basic concept of resource has changed due to the use

of resource virtualization, the driving technological force of

the cloud paradigm [2], [3], [4], [5], [6]. We have recently

proposed cloudgrid, a novel architecture for the integration of

clouds and grids, and presented its implementation, PerfCloud

[7], [8]. Among other things, PerfCloud makes it possible

to set up a cloud-based provision of computing resources

taken from an existing grid. The leased virtual resources are

usually organized in virtual clusters, which are automatically

integrated in the underlying grid [8].

Changing the way in which resources are provisioned has

a strong impact on the scheduling of scientific applications,

that is, on the matching of applications to the resources they

need to execute. Virtualization offers new opportunities (e.g.,

the acquisition of virtually infinite resources) and poses new

challenges (assessing the effect of virtualization on system

performance, extracting information on the physical resources

“hidden” behind a virtual interface). There exists a vast and

consolidated body of literature dealing with the scheduling of

applications in grids, which is a complex problem by itself.

But nowadays the schedulers should also address the highly

dynamic nature of hybrid cloud-grid architectures.

Over the last years, autonomic computing [9], [10] has

emerged as a paradigm able to cope with complex and rapidly-

mutable environments. Currently research is investigating how

to design cloud and grid environments endowed with auto-

nomic management [11], [12], [13]. The work we present here

is a step in this direction, as it focuses on the introduction of

self-optimization capabilities in cloud and grids. This paper

introduces CHASE, our prototype implementation of an au-

tonomic engine designed to tackle the scheduling problem in

PerfCloud, adding self-optimization capabilities. However, our

proposal is not tied to the architecture of a cloudgrid, but it

is sufficiently general to be integrated with any cloud, grid or

hybrid environment.

The rest of the paper is organized as follows. First of all,

the proposed autonomic architecture is presented, describing

in detail the design of CHASE. Applications of the prototype

are then illustrated showing its integration with PerfCloud and

its use in an on-going research project. Then the results of

our first experimentations are presented, discussing how the

NAS Parallel Benchmarks are autonomically scheduled on the

cloudgrid. The following section sets our work in the context

of current literature. The paper closes with our comments on

the CHASE architecture and a discussion on future work.

II. RATIONALE AND ARCHITECTURE OF AN AUTONOMIC

RESOURCE MANAGER

Traditionally, resource managers adopt a resource-centric

approach, in that their goal is to manage the system so as to

make efficient use of available resources. It is often silently

assumed that an efficient utilization of the resources leads to



an efficient scheduling of the applications. Since this is not

always the case, a mismatch may arise between the system

and the application perspective. In this situation, it is up to

the application developer to estimate the quantity of resources

needed by his application to achieve a given performance

level, and to use overprovisioning to mitigate the effect of

an inappropriate (from his point of view) scheduling.

Our engine is instead based on an application-centric ap-

proach. The CHASE scheduler is driven by the predictive

evaluation of the application performance for different possible

resource assignment scenarios, and explores the solution space

until some user-supplied constraint is satisfied. In our system,

performance predictions are obtained by simulation of the

application for a given resource assignment by means of a

discrete-event simulator. Since our focus is primarily on HPC

applications, our first tests involve applications made up of

independent processes interacting through an MPI-compliant

message passing middleware. However, CHASE can be used

also in different fields. Most of the times, its use in different

contexts requires just a change the user-supplied metric (for

transactional software, for example, the completion time used

for HPC applications should be replaced by response time or

throughput). As will be discussed below, the exploration of the

whole solution space involves huge computational complexity,

due to exponential growth of the possible combinations of

resource assignments and mappings. This entails the need to

use “smart” techniques to reduce the number of simulation

runs required.

Fig. 1: CHASE architecture

Figure 1 highlights the main components of the proposed

autonomic system, logically mapped to the corresponding

autonomic building blocks described in [9]. Below we will

discuss the function of these blocks in an orderly way.

A. Input

Basically, to perform the autonomic prediction service,

CHASE requires an Application Description and one or

more Autonomic Performance Parameters. The Application

Description is a synthetic representation of the application

behavior used for driving the simulations. The description

captures the fundamental operations (the most relevant as far

as performance is involved) performed by the application,

and is expressed in MetaPL, an XML-based modeling lan-

guage whose schema provides support for the main constructs

(procedure calls, loops, message-passing operations) found in

common scientific languages and libraries.

The choice of a dedicated language requires some additional

comment. Most tools in literature tend to work directly on

the application code (in binary or source format) or on other

automatically-derivable representations like application traces,

which are ordered sequences of the most relevant events

(e.g., CPU bursts, communication events) occurred during a

previous execution of the application – possibly on another

platform. This approach has the clear advantage that applica-

tion descriptions can be obtained without requiring additional

effort from the application programmer. On the minus side, it

is difficult to use application traces to predict the behavior of

an application with a different number of processes from the

one used during the tracing. Our “artificial” application model,

on the other hand, is easily parameterizable in the number of

processes or in the number of loop iterations. In fact, this

flexibility is also present in the original application source or

binary code, but the model straightforwardly obtained from

the sources is too complex and is likely to lead to too

long simulation times. On the other hand, the MetaPL model

can be designed to capture only the essential behavior of

the application, discarding the sections of code which have

small impact on system performance. Another advantage of a

synthetic modeling language is that it can also be used as an

initial specification of the application, in the spirit of languages

like UML: this minimizes the additional cost of modeling (if,

as in good practice of software engineering, an initial model

has to be provided in any case) and leads the way to deriving

skeleton implementations from the model.

The Autonomic Performance Parameters make it possible

to specify constraints on the selection of the resources to

comply with the application performance goals. Two types of

parameters are currently defined:

• Constraint, by which the application developer can im-

pose constraints on the selection of the resources. Prede-

fined constraints make it possible to limit such parameters

as the total number of nodes to be used, the total number

of processes, or the number of processes per node.

• Target, which defines the objective function and specifies

if it has to be minimized or maximized. The most com-

monly used target parameters we use are total execution

time (minimized) and parallel efficiency (maximized).

B. Planning

The Optimization Unit (OU) is the “smart” component of

the architecture. It is able to reduce the number of simulations

that have to be performed in order to find the best configuration

of resource assignments. It is worth pointing out that the

configuration space is almost always of intractable magnitude.

Let us consider, for example, a 16-nodes (small) cluster in

which every node has 2 CPUs available. Then let us suppose



to limit the allocation of processes to nodes to 2, in order to

avoid overbooking processors. Even in this simple and heavily

constrained scenario, the number of possible allocations is 316

(about 43 millions). It is not clearly feasible to perform such a

high number of simulations in time comparable with the “think

time” introduced by other schedulers. However, it can be

easily recognized that considering every possible combination

of resources and allocations brings a considerable amount of

redundancy. For example, let us consider a cluster composed of

3 identical machines (say A, B, C), equally loaded, on which

we have to allocate 2 processes (P1, P2). We expect that the

schedules {P1 → A,P2 → B} and {P1 → B,P2 → A} are

substantially equivalent. Similarly, the three schedules {P1 →

A,P2 → B}, {P1 → A,P2 → C}, {P1 → B,P1 → C}
are also expected to show identical performance.

The Optimization Unit uses different techniques to exploit

the solution space symmetries. First of all, the entire system

is modeled as a fully connected graph (fig. 2a), in which

every node corresponds to a computational node and the arcs

represent virtual transmission links (even if a physical link

does not exist, the nodes can communicate through switching

or routing). Associated with every node is information as the

hostname, the number of CPUs and the current load present

on the node. Every arc instead has a weight that represents

the estimated latency between nodes. The information needed

to build the system graph is contributed by the System

Information Unit (described later in this section).

Once the system model is available, the OU starts a

multiple-step partitioning of the graph using several different

partitioning criteria. The first partitioning is performed by ex-

amining communication properties. The nodes whose mutual

connection latency is above a certain threshold are put in

distinct subsets (fig. 2b). This makes it possible, for example,

to identify computer clusters and to put in different subsets

the nodes belonging to different clusters. To support execution

of HPC applications, first the OU makes the simplifying

assumption that a resource assignment can only collect nodes

from the same subset. If a subset of the required size has not

been found, the latency threshold is raised (this will lead to

larger subsets). This operation is possibly repeated until a node

subset of the required size is eventually found. The rationale

here is that this scheme leads to the resource allocation

with the minimum latency between nodes, a key requirement

for HPC applications. After that (at least) one suitable set

has been found, a second partitioning is made inside each

subset grouping together the CPUs similarly loaded (fig. 2c).

Once these partitionings have been carried out, the number

of alternative configurations to be simulated is drastically

reduced, since the nodes in every subset behave in the same

way as far as resource assignment is concerned. In other word,

picking any resource from a node or another inside a given

subset leads to similar performance.

C. Analysis

For a given system configuration, the performance pre-

diction is performed by the Discrete Event Simulator. This

is a Java-based prototype that represents the evolution of

our previous heterogeneous system simulator, HeSSE [14].

The simulator is able to predict the execution time of dis-

tributed message-passing applications executed on heteroge-

neous nodes. New simulation models have been developed

for virtualized applications, taking into account the presence

of the hypervisor and the associated overheads. A key issue

with the simulator is that it must be able to perform very

fast simulations of application execution. This is of paramount

importance: if a simulator is designed to support scheduling

decisions, it has a limited “think time” available to perform the

needed evaluations. Obviously, simulation speed has a price.

It is commonly recognized that system simulation trades off

speed for accuracy and simulation scalability. Our simulator

obtains a lower accuracy (errors between 20% and 30% of

measured time) than well known cycle-accurate simulator,

which are slower by three or four orders of magnitude.

Our simulator makes it possible to model the computational

(CPU bursts) and communication sections of an execution

run for different target machines and networks. This is done

through the use of parameterized models both for computing

and communication. Computational parameterization is done

through the application of a scaling factor that accounts for

the different performance level between a reference machine

and the target one. This scaling factor is not calculated as a

ratio between the frequencies of the processors (recognized in

literature as inadequate), but through the execution of different

benchmarks on the reference and target machine. Network

parameterization requires the execution of benchmarks for

calculating actual latency and bandwidth, or more complex

parameters as the ones used in the LogP model.

The Performance Models are the pluggable simulator

classes that give to CHASE the flexibility needed to operate in

heterogeneous environments. The modularity of the simulator

makes it possible to substitute the performance models (e.g.

network, processing, virtualization model) with small effort.

D. Knowledge

The CHASE System Information Unit (SIU) is re-

sponsible for acquiring knowledge about the underlying

cloud/grid/cloudgrid system. These informations belong sub-

stantially to two classes: resource parameters and benchmark

results. The resource parameters are used by the Optimiza-

tion Unit to build up the system model (see above). The

benchmark results are needed by the simulator to predict

the execution time on heterogeneous nodes. In the current

CHASE prototype, the SIU has been designed to interact with

the PerfCloud environment, which provides explicit API calls

to export the underlying physical machine configuration and

reference benchmark data. Work is in progress to extract a

meaningful set of informations from systems which do not

expose this information (e.g., commercial clouds).

E. Monitoring

The CHASE Monitoring Unit is responsible for interacting

with the cloud or grid monitoring systems. The monitoring



(a) Before Network Partitioning. (b) After Network Partitioning. (c) Decision Tree for CPU-based partitioning.

Fig. 2: Partitioning of the System Graph by the Optimization Unit

subsystem is used to inform the other parts of possible failures

or degradations that may cause violations of performance

contracts, so that countermeasures can be applied. At the

state of the art, CHASE performs only performance predic-

tions at application startup time. Once the application has

been launched on the autonomically chosen nodes, no further

optimization is performed. We are working to extend this

component so as to add further autonomic capabilities to the

system (e.g., to support load migration).

F. Execute

The plan devised by the Optimization Unit (i.e., the list

of selected resources on which the application should be

launched) is translated into actual cloud resource creation

commands by the CHASE Controller. This component is able

to interact with the cloud system to operate the creation and

launch of virtual machines. Currently, the CHASE controller

is able to interact with the PerfCloud API for managing

the virtual machine lifecycle, but its design makes it very

straightforward to add subclasses for the management of

different systems.

III. CHASE IN THE PERFCLOUD FRAMEWORK

PerfCloud [7] is a cloudgrid [8] implementation which

offers services for the creation and management of virtual

computing resources on the top of a computing grid. The

resources leased to users by the PerfCloud system are virtual

clusters (VC), i.e., sets of preconfigured virtual machines

(VMs) connected by a virtualized network. The VCs are

automatically integrated in the existing grid. The cloud user

has administration rights on the leased VCs, but he cannot

manage the physical resources. The PerfCloud architecture

can be integrated with CHASE to make up an autonomic

IaaS provision with predictable user application performance

on the newly instantiated virtual clusters. To illustrate this

integration, some details are needed about PerfCloud interface.

PerfCloud provides a service oriented interface on top of

existing virtual machine engines (Xen, KVM, VMWare) and

schedulers (OpenNebula[15], Nimbus[16]). It offers resource

abstraction (in terms of WSRF [17]) that enables services (and

service invokers) to manage directly the functionalities offered

by virtualization engines and VM schedulers. As shown in

Figure 3, PerfCloud resource representation (hexagons in the

picture) can be Virtual Workspaces or an abstraction of VMs

and VCs.

Fig. 3: A particular of the PerfCloud Interface

The PerfCloud API offers a large set of services related to

different cloud technologies. A summary of some of the basic

services is provided here:

• VC2GS, ONE, VCservice, Vbox: they are the main

VC interfaces. They implement the Virtual Workspaces

WSRF and can be invoked to set up the virtual clusters.

The first two interact with Nimbus and OpenNebula

services, respectively. VCservice and Vbox are instead

standalone, in that they directly control the hypervisors

of the physical nodes (Xen and VirtualBox, respectively).

• BenchGS, BenchDB: The first starts up a set of bench-

marks on the target VC, which can be useful to measure

the performance of the virtual cluster. BenchDB starts

up a dedicated virtual machine provided with a MySQL

database to collect benchmark results [18].

When CHASE is used on top of PerfCloud, it acts as an

intermediary between the client and the PerfCloud service-

oriented Interface. This mediation creates an higher level of

abstraction than basic IaaS. PerfCloud (or other IaaS systems)

makes it possible to ask “get me a virtual cluster made of

1 frontend and 3 nodes”, the enriched CHASE+PerfCloud

interface accepts requests of the kind “get me a virtual cluster

capable of running this application in less than 2 hours”.



When CHASE receives such a request, it firstly retrieves

from PerfCloud the configuration of the system it is managing.

Then, it retrieves benchmark data through the PerfCloud

BenchService. With this data, CHASE operates the autonomic

process described in the previous section, which culminates

with the invocation of one of the VC creation services to

instantiate the virtual cluster.

IV. CHASE IN THE CLOUD@HOME SYSTEM

Cloud@Home is a project funded by the Italian Gov-

ernment. It aims at merging the cloud and volunteer com-

puting paradigms. Cloud@Home [19] collects infrastructure

resources from many different resource providers and offers

them through a uniform interface, in a Infrastructure as a

Service (IaaS) perspective. These resource providers can range

from commercial cloud providers to academic partners, or even

to individually voluntereed desktop machines. Cloud@Home

puts great emphasis on the management of Service Level

Agreements (SLAs) and Quality of Service (QoS) and pro-

vides dedicated components for that (respectively, the SLA

Manager and the Resource&QoS Manager, RQM in short).

Inside the Cloud@Home Architecture, CHASE is a relevant

component used during the service negotiation phase: when

the Cloud@Home SLA Manager needs to evaluate the sustain-

ability of user requests, it transmits to the RQM component a

formalized description of the QoS Level explicitly requested

by the user. The RQM forwards this description to the CHASE

engine, along with an application description and information

about the current state of system, in terms of resource avail-

ability and load. CHASE performs the autonomic prediction

and informs the RQM whether a configuration matching the

requested QoS has been found or not.

V. EXPERIMENTS

As a first experiment for assessing the capabilities of

CHASE, we have deployed its prototype implementation to-

gether with a PerfCloud installation. In the testbed, PerfCloud

“cloudifies” an 8-nodes cluster in which each workstation is

powered by 1 Intel Xeon “Nocona” running at 2.80 Ghz,

with 1MB L2 cache. A MetaPL description of the NAS

Parallel Benchmark LU [20] has been manually derived. A first

execution of CHASE is done submitting this description and

asking the system to minimize the execution time. A second

execution was made with the constraint of using at least 4

nodes and the maximization of parallel efficiency as objective.

For comparison, measurements are taken from real executions

of LU (from NPB version 2.4). Logging was activated, to make

CHASE print the evaluation of all the tried configurations,

instead of printing just the chosen one. Table I shows the

results. The configuration selected in the first execution was

confirmed from direct measurement to be the one with lowest

execution time. In the second run, the selected configuration

was again confirmed to be the correct one. The prediction error

is very low, which is an encouraging result, considered that the

LU benchmark is not a toy example but an HPC application

that leverages all the principal machine subsystems.

VI. RELATED WORK

A wide body of literature deals with resource management

in traditional (i.e., non-virtualized) grids. A survey and a

taxonomy of such management systems is presented in [21].

The resource provisioning problem in virtualized systems has

been tackled in the Shirako system from Duke University and

in the Haizea architecture from University of Chicago/Argonne

National Laboratory. Both systems hinge on the concept of

leases, contracts that define which resources are assigned to

users and the duration of these assignments.

Shirako [22] is a flexible leasing infrastructure with models

for controlling different leasable resources, including virtual

machines. As compared to our CHASE system, Shirako takes

into account different optimization issues, such as the sizing

of the sliver (the quantity of node resources assigned to a

specific virtual machine) and the possibility to migrate virtual

machines. It provides autonomic capabilities to “turn the

knobs” that control these two aspects. It does not provide an

infrastructure for startup performance prediction.

Haizea [23] is a resource manager that integrates advance

reservations with batch scheduling. To support advance reser-

vations (the possibility to reserve usage of resources in a future

time interval), a batch scheduler must eventually suspend

the best-effort jobs running when the reservation time is

approaching. This is a complex task that requires the use of a

checkpoint infrastructure. The key idea in Haizea is to ease this

process by substituting the concept of job (both best-effort and

reserved in advance) with leases of virtual machines, which are

easily suspendable and resumable by their nature. Currently

Haizea does not support autonomic adaptive behavior during

the execution of the application. A substantial difference with

our design is that it is based on a resource-centric perspective:

the submitting user must know which resources he needs to

run the application. In contrast, CHASE takes an application-

centric perspective: the user submits the application, together

with some performance parameters that must be respected, and

the system decides the quantity of resources to be assigned to

the application.

An approach more similar to the CHASE one is used in Ap-

pLeS [24], a methodology for adaptive application scheduling

on computational Grids. Applications are associated with a

customized scheduling agent that monitors available resource

performance and generates dynamically a schedule for the

application. In common with our design, AppLeS agents are

capable of performing performance predictions, based on the

Network Weather Service [25]. Since AppLeS is targeted to

physical grids, it does not provide any support for modeling

resource virtualization.

VII. CONCLUSIONS

In this paper we have introduced CHASE, an autonomic

framework for the development of self-optimizing applications

in cloud environments. CHASE uses a simulation-based ap-

proach to predict application performance behavior both in

terms of resource usage and of response time. Applications

are preliminary described in a high level language. We have



TABLE I: CHASE evaluations vs. direct measurements for LU NAS Parallel Benchmark

Execution time Parallel Efficiency
#Nodes #VMs per Node Measured Predicted Error Measured Predicted Simulation time

1 1 3222.40 3089.77 -4.11% 1 1 0.18
2 1 1729.31 1673.60 -3.22% 0.93 0.923 3.61

4 1 928.30 965.79 3.93% 0.87 0.802 12.21

8 1 542.55 552.851 1.90% 0.74 0.70 31.17
1 Chosen with: Target = min{execution Time}
2 Chosen with: Constraint={numNodes >= 4} and Target = max{parallelEfficiency}

presented the architecture of this autonomic engine, clarifying

the use case scenarios and the models developed. The target

applications considered till now are explicitly parallel HPC

codes, even if the approach is in principle more general, and

not constrained to them.

We have shown how to integrate the autonomic engine in

two different contexts: PerfCloud, a software for IaaS provi-

sion based on cloud and grid integration, and Cloud@Home,

a project whose aim is to build up a cloud provider using

volunteer-based resources. We have presented some prelim-

inary experimental results obtained using a real-world HPC

application (the NAS LU benchmark). These point up correct-

ness of the approach used, even if they cannot be considered

a full validation of the solution.

Our future work will focus on a complete validation of

the approach, adopting a large set of real applications, on

the optimization of the prediction module (simulator) and the

experimentation of the approach on non-HPC applications.
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