
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.



Per-service Security SLA: a New Model for
Security Management in Clouds

Valentina Casola⇤, Alessandra De Benedictis⇤, Jolanda Modic†, Massimiliano Rak‡ and Umberto Villano§
⇤

Universit`a di Napoli Federico II, DIETI, Napoli, Italy

alessandra.debenedictis@unina.it, casolav@unina.it

†

XLAB, Ljubljana, Slovenia

jolanda.modic@xlab.si

‡

Seconda Universit`a di Napoli, DII, Aversa, Italy

massimiliano.rak@unina2.it

§

Universit`a del Sannio, DING, Benevento, Italy

villano@unisannio.it

Abstract—In the cloud computing context, Service Level
Agreements (SLAs) are contracts between Cloud Service
Providers (CSPs) and Cloud Service Customers (CSCs), stating
the guaranteed quality level of the services offered by CSPs.
Existing cloud SLAs focus only on few service terms, completely
ignoring all security related aspects. They are often reported in
a way that is hardly understandable for customers. Moreover,
they offer guarantees uniform for all offered services and all
customers, regardless of particular service characteristics or
customers specific needs.

This paper presents a framework that enables the adoption
of a per-service SLA model, by supporting the automatic
implementation of cloud Security SLAs tailored to the needs of
each customer for specific service instances. In particular, the
process and the software architecture for per-service SLA im-
plementation are shown. A case study application demonstrates
the feasibility and effectiveness of the proposed solution.

Keywords-Cloud Security, Per-service SLA, Security Service
Level Agreement

I. INTRODUCTION

In the cloud computing context, Service Level Agree-
ments (SLAs) are contracts between Cloud Service Providers
(CSPs) and Cloud Service Customers (CSCs), stating the
guaranteed quality level of the services offered by CSPs.
Despite the intense standardization and research efforts
[1], [2], [3], [4], [5], current cloud SLAs are essentially
descriptions in natural language that focus only on few
service terms (mostly on availability), completely ignoring
all security related aspects. Moreover, CSPs only offer SLAs
with which they guarantee these service terms uniformly for
all offered services to all customers, regardless of particular
service characteristics or customers specific needs.

The standardized service level offered to all customers by
a given CSP, i.e., the use of a uniform SLA, is hardly ever
satisfactory, especially as far as security is concerned, since
it does not take into account different requirements of differ-
ent CSCs nor the peculiar characteristics of different services

provided by CSPs. Some commercial cloud providers (e.g.,
Google Cloud1 and Amazon2) have recently split their SLAs
over the services they offer; however, (i) their contents
hardly adapt to services (i.e., SLAs for different services are
mostly the same), (ii) security features are still not covered
(i.e., SLAs are performance-focused, including objectives
associated mostly to availability), and (iii) they are still not
negotiable (i.e., the CSC does not have an option to acquire
the service with the specific required security properties).
Hence, in practice, the same security policy is applied by
CSPs to all services and to all customers in a uniform way.

The alternative approach is to adopt a CSC-based per-

service SLA model. This model entails the use of a “tai-
lored” SLA for each service, where every CSC can stipulate
a distinct SLA for each leased service. The model is com-
monly considered inapplicable in clouds, due to the inherent
management complexity on the CSP side. It is clear that the
CSP has to manage a widely different range of SLAs, and
this is, if not unfeasible, simply not a priority for CSPs.

In this paper, we present a framework that enables the
adoption of a novel CSC-based per-service SLA model. The
deployment of the supporting software of the framework
devoted to per-service SLA management requires no user
intervention, i.e., it can be implemented automatically on the
top of prevalent tools for the automated software manage-
ment. This is perfectly in accordance with the automation,
self-service, no-user intervention principles that are among
the foundations of cloud computing. The results presented
in this paper are partly related to the activities carried out
in the context of the SPECS3 and MUSA4 EU projects,
whose objectives are respectively to provide a platform-as-a-
service to develop SLA-based secure cloud security services
and to promote security-by-design in multicloud application

1https://cloud.google.com/
2https://aws.amazon.com/
3http://www.specs-project.eu
4http://www.musa-project.eu



contexts through the adoption of SLAs. However, although
the paper focuses on the provisioning of CSC-based per-

service security-related SLAs, the introduced approach can
be adopted in different contexts, e.g., for the implementation
of performance-oriented SLAs.

The paper is organized as follows. In Section II we
present related work. Then, in Section III, we deal with
the implementation of per-service SLAs and, in Section IV,
we briefly present our reference Security SLA model. In
Section V, we discuss the software architecture designed for
the implementation of the proposed process, and in Section
VI we show a concrete application, the provisioning of a
secure web container service. The paper closes with our
conclusions.

II. RELATED WORK

The adoption of SLAs in cloud computing has been
inspired by telecommunication and GRID systems. How-
ever, in the cloud context, the problem of stating formal
guarantees on services is more complex, due to the lack
of a reference technology and of well-assessed standards
for implementation of services. As a consequence, cloud
SLAs are a hot topic of research and there are several
ongoing initiatives, both in industrial and academic contexts,
aimed at supporting their use and their standardization. WS-
Agreement (WSAG) [2] is currently the only standard sup-
porting a formal representation of SLAs and a protocol for
their automation. Although it was devised in a well-defined
technological context (i.e., the GRID) and not completely fit
in other contexts, most of recent cloud-oriented FP7 projects
(Contrail5, mOSAIC6, Optimis7, PaaSage8) are inclined to
adapt it for use in clouds.

A review of available literature on SLA management in
clouds has recently appeared in [6]. It shows that security is
among the least studied SLA parameters. In service-oriented
environments, several proposals addressing the negotiation
of dynamic and flexible SLAs have appeared [7]. The
problem of ensuring quality of service and SLA facilities on
top of unreliable, intermittent cloud providers is discussed
in [8]. A strategy for the autonomous negotiation among
a CSP and its customers is presented in [9]. However, the
negotiation parameters considered are essentially cost and
availability. An interesting proposal addressing performance
losses due interference effects is the use of a QoS-aware
control framework to obtain quality-enabled clouds (Q-
Clouds), proposed in [10]. A framework to determine the
trustworthiness of cloud service providers by employing the
real time monitoring of their services is presented in [11].

The main commercial IaaS providers (Amazon,
Rackspace, GoGRID, etc.) usually propose an SLA

5http://www.contrail-project.eu
6http://www.mosaic-cloud.eu
7http://www.optimis-project.eu
8http://www.paasage.eu

contract that specifies simple grants on uptime percentage
or network availability, along with additional services (for
example, Amazon CloudWatch) that monitor the state of
target resources (i.e., CPU utilization and bandwidth) [12].
Open Cloud Engine software like Eucalyptus, Nimbus,
OpenNebula, also implement monitoring services for the
private cloud provider, but do not provide solutions for
SLA negotiation and enforcement. An interesting survey on
the use of SLAs in clouds by current enterprises is [13].
Its Authors recognize that often the SLAs proposed by
cloud providers are not “well defined”, and that, since the
monitoring tools are managed by the CSPs themselves, in
case of any breach of SLA parameters the customers cannot
invoke the agreed penalties from a legal point of view.

III. IMPLEMENTING per-service SLAS

As outlined in the introduction, our aim is to promote the
adoption of a per-service SLA model, which entails the use
of a “tailored” SLA for each service. In order to demonstrate
the feasibility of the approach, we defined a process for the
implementation of per-service Security SLAs that complies
with the main cloud computing principles, including the on-

demand self-service and the resource pooling capabilities.
The key idea behind such process is the adoption of the
Security-as-a-Service approach, enabled by the use of a con-
figuration management solution. Configuration management
solutions, like Chef9 or Puppet10, are commonly adopted
to automate software installation and management over a
pool of virtual machines (VMs). Through such tools, it is
possible to build up cloud services delivered in a Software-
as-a-Service (SaaS) fashion, automating the process of de-
ployment of commercial-off-the-shelf (COTS) software over
dynamically acquired infrastructure resources (as VMs or
container hosting).

Security best practices prescribe the implementation of a
set of security controls (such as those specified in the NIST
Security Control Framework [14] or the Cloud Security
Alliance’s Cloud Control Matrix [15]) in order to cope with
specific security risks. Usually, these controls are determined
on the basis of a risk analysis process conducted by an
expert. They represent the security policies set in the system
and are implemented through suitable security mechanisms.
Our approach consists in building a catalogue of security
mechanisms able to implement given security policies, and
in offering them as-a-service. Our security mechanisms are
based on open source solutions and come with a set of
metadata, declaring the implemented security controls and
the configurable parameters. Through a dedicated Security
SLA model, presented in the next section, we collect the
CSC’s security requirements in terms of security controls
and identify how we can implement them through a set of

9https://www.chef.io
10https://puppetlabs.com



dedicated security mechanisms. Figure 1 briefly summarizes
the proposed approach: the core of the solution is the SLA

Automator, a web application that on one side negotiates
with the CSC the content of a Security SLA, and on the other
controls a Broker, devoted to acquiring resources from CSPs,
and a Configuration Manager, responsible for automating
the enforcement of desired security controls through the
activation of needed security mechanisms.

It is worth noticing that, usually, configuration managers
are controlled by humans, in order to automate both the
deployment of software instances on multiple resources
and their synchronization. In our case, the control is given
entirely to the SLA Automator, which configures and controls
the underlying Configuration Manager based on the content
of the SLA. The SLA Automator also controls a Broker,
which is in charge of invoking the APIs exposed by CSPs
to manage (acquire/release/reconfigure) the resources needed
to build the service provided to customers.

Once the SLA Automator agrees on a Security SLA with
the CSC, it builds an implementation plan that contains the
list of the resources to acquire (e.g., type and number of
VMs) and of the security mechanisms to deploy and activate
on each of them. The implementation plan is then forwarded
to the Configuration Manager for its actual implementation.

Figure 1. SLA Implementation: the proposed approach

Figure 2 summarizes the full implementation process. In
the first step, the CSC defines the terms of the desired
SLA. This step is carried out according to a template-
based process, as prescribed by WS-Agreement. SLA Tem-

plates summarize all the features of supported services and
represent potential SLA offers, which are translated into
signed SLAs when an agreement is reached between the
two parties. In our model, as will be clarified in the next
section, the adopted Security SLA Templates include all
the security policies that can be offered via the available
security mechanisms. Once an agreement is reached, the
SLA Implementation phase starts. It mainly consists in
(i) identifying the security mechanisms that implement the
terms agreed upon in the SLA, (ii) acquiring the resources
as declared in the SLA, (iii) registering them into the
configuration management system, and finally (iv) running
the configuration procedure.

The full process described above enables the complete
automation of the Security SLA implementation, even if the
security policies are customized according to the customer

Figure 2. Security SLA Implementation process

requirements. The software architecture designed to imple-
ment such process will be described in Section V, while the
adopted Security SLA model is dealt with in the following
section.

IV. THE SECURITY SLA MODEL

In the context of the SPECS project, we have proposed a
novel model of Security SLA, allowing for the representation
of security-related concepts in a machine-readable format,
based on WS-Agreement and amenable to the automatic
management of the SLA life-cycle [16], [17].

The main concepts of the SPECS Security SLA model
are represented in white boxes in the Security SLA domain

model of Figure 3. The figure shows the concepts introduced
for SLA implementation and discussed in the previous
section, namely the security mechanisms and the Security

SLA Template (grey boxes).
The Security SLA model includes a (i) declarative part,

where the functional and non-functional (i.e., security-
related) characteristics of the service being provided are
described, and (ii) a measurable part, where the concepts
needed to define the guarantees in terms of security offered
on the service are specified. The declarative part includes:

• the description of the cloud resources (i.e., VMs) used
to build the service object of the agreement and of their
providers (Resources Providers);

• the declaration of the Security Capabilities offered on
top of the service object of the agreement, defined in
terms of the Security Controls, belonging to a given
Control Framework, which must be implemented [14],
[15];

• the declaration of the Security Metrics that can be
monitored by the service customer to verify the correct
delivery of declared capabilities.

The part of the Security SLA model devoted to the
definition of offered security guarantees (i.e., the measurable
part) is represented by a set of Security Service Level
Objectives (SLOs). SLOs are constraints on the admissi-
ble values of declared security metrics, and represent the
security levels that the service customer requires and that



Figure 3. The Security SLA domain model

the service provider accepts to offer. SLOs and the relative
security metrics are associated with the declared security
capabilities and are meant to offer a quantitative measure of
the declared security controls.

It is worth pointing out that the described model refers to
an SLA built on the top of the SLA Template for a specific
customer and a specific service instance (CSC-based per-

service SLA), possibly offered through a supply chain that
involves the acquisition of resources/services from more than
one provider.

V. DESIGN OF THE SLA IMPLEMENTATION FRAMEWORK

In this section, we present the software architecture
proposed to implement the approach illustrated in Figure
1, and provide some details on the design of the SLA

Automator component. As shown in Figure 4, the SLA

Automator consists of four software components, namely
the Application, the SLA Manager, the Services Manager

and the Implementation component.

Figure 4. Per-service SLA Implementation Architecture

The SLA Manager provides the basic functionalities to
create, store and retrieve SLAs and keeps track of the
current state of processed SLAs. The SLA Manager also
manages a set of SLA Templates, representing the security

offers that are available to customers and which are used
during negotiation, according to the WS-Agreement specifi-
cation. The functionalities provided by the SLA Manager

are exposed through the SLA API, a publicly available
REST API [18], which can be easily integrated into existing
applications to enable the construction of software solutions
for orchestrating services based on SLAs.

The Service Manager is responsible for managing all
the information on available security capabilities and on
the supported security mechanisms that can be activated in
order to offer such capabilities in an as-a-service fashion.
The Service Manager exposes the Services API, which can
be invoked to add or remove security capabilities and to
update the set of supported security mechanisms and security
metrics.

The Implementation component is able to implement an
SLA by managing the acquisition and configuration of
the resources (i.e., the VMs) needed to put in operation
the service object of the SLA, along with all security
features included as guarantees. This includes the activation
and configuration of the security mechanisms that offer
the security capabilities selected by the CSC. Resource
acquisition is carried out by the Broker component, which
interacts with public or private providers to buy resources on
behalf of the customer. Resource configuration is automated
by the Configuration Manager, which is responsible for
automating the installation, execution and configuration on
acquired virtual machines, of the software components that
implement the requested security features (i.e., the needed
security mechanisms). The Configuration Manager has been
implemented by exploiting Chef, one of the most popular
cloud automation tools.

The component identified as Application in Figure 4
orchestrates all the components previously discussed by
invoking their exposed APIs. The Application offers a web
interface to the customers, through which they can select the
desired services and their features and can follow the whole



implementation process. Moreover, the Application interface
also allows the customers to monitor the state of their SLAs.

It is important to point out that the target service, along
with all requested security mechanisms, are installed and
activated on the resources acquired and controlled by the
customer. Nothing can be said in general on services that run
on resources that are not directly under the customer control,
since no guarantees can be expressed on them unless they
are provided by the provider itself. Moreover, it is worth
mentioning that, since acquired services are configured on
the customer’s resources, it is possible to monitor that
the guarantees stated in the SLA are actually respected.
Measurements related to security metrics associated with
the selected security capabilities are continuously gathered
by monitoring systems that are activated by the Implemen-

tation component together with security mechanisms. SLA
monitoring is out of the scope of this paper. The interested
reader is referred to [19] for further details.

VI. A CASE STUDY: A SECURE WEB CONTAINER
SERVICE

In order to show the feasibility of our approach, in this
section we illustrate a case study related to the acquisi-
tion of a secure web container service through the Secure

Web Container Application available online as a SPECS
demonstrator11. The target customers of this service are
represented by web developers that are aware of the main
security threats for web servers and are able to formulate
specific security requirements (possibly derived from best
practices and guidelines), but need support in identifying
and implementing the required security countermeasures.

First of all, the developed application enables the cus-
tomer to negotiate the desired features of the service. As
SPECS supports a template-based negotiation, the customer
is presented with a set of possible choices, including the
provider to be used for the acquisition of needed resources
(which, in this case, are represented by VMs configured with
a web server instance) and the available enforceable security
capabilities. In our example, three capabilities are available:

• Web Resiliency. Capability of surviving to security
incidents involving a web server, by implementing
proper strategies aimed at preserving business conti-
nuity, achieved through redundancy and/or diversity.

• Vulnerability Detection. Capability of detecting the
vulnerabilities a machine (and the installed software)
is subject to.

• DoS Detection and Mitigation. Capability of detecting
and reacting to security attacks aimed at distrupting the
system availability.

Each capability is associated with a set of security controls
and with one or more security metrics, available to the
customer for monitoring purposes. The customer can choose

11http://apps.specs-project.eu/webcontainer-app-rev2/#/welcome

the metrics of interest and define thresholds on them to spec-
ify SLOs. For example, the Web Resiliency capability has
two metrics associated, namely Level of Redundancy

(LoR), which identifies the number of aligned web server
replicas kept active during service operation to counter-
act possible attacks against availability, and Level of

Diversity (LoD), which represents the number of differ-
ent web server instances (e.g., Apache and Nginx) that are
actually installed on such replicas. When specifying SLOs
on top of such metrics, a customer may require that LoR � 3
and LoD = 2, implying that, at any time, at least 3 replicas
of the web server are kept alive, and at least two of them
run different web container instances.

At the end of the SLA negotiation phase, the SLA offer,
including all selected capabilities and metrics, is signed
and pushed to the Implementation component for the SLA
implementation phase. As illustrated in the previous section,
the Implementation component coordinates the acquisition
and configuration of needed resources by installing and
activating proper security mechanisms. In particular, the
three capabilities discussed above are implemented through
the following security mechanisms:

• Web Pool. It offers (a pool of) virtual machines, hosting
synchronized web servers and a load balancer12. The
service provides redundancy and diversity capabilities.

• SVA (Software Vulnerability Assessment). It regularly
performs vulnerability assessment over the virtual ma-
chines, through software version checking and penetra-
tion tests13.

• DoSprotection. It consists in a solution for denial of
service attacks detection and mitigation 14based on the
OSSEC tool15.

For example, in the case of the Web Resiliency capability,
in order to enforce the two SLOs discussed above via the
Web Pool mechanism, the Implementation component will
acquire 4 VMs: one will host the load balancer component,
while the others will host 3 replicas of the target web server.
Two of these replicas will be configured with an Apache web
server, while the third one will be configured with an Nginx
web server. When implementation is complete, the SLA
monitoring phase starts, and the customer can monitor the
behaviour of the deployed service by checking the measured
values of selected security metrics.

VII. CONCLUSIONS

In this paper, we investigated the adoption of CSC-based
per-service Service Level Agreements in clouds. In a context

12The WebPool mechanism is available at: https://bitbucket.org/specs-
team/specs-mechanism-enforcement-webpool

13The SVA dashboard is available at: https://bitbucket.org/specs-
team/specs-mechanism-enforcement-sva dashboard

14The DoSprotection mechanism is available at:
https://bitbucket.org/specs-team/specs-mechanism-monitoring-ossec

15http://ossec.github.io/



where existing CSP proposals essentially provide simple
grants on performance aspects to all prospective customers,
we focused on security guarantees offered to customers,
according to their particular needs and related to specific
service instances.

Based on a novel per-service Security SLA model, we
identified the process needed to enable the automatic man-
agement of the whole life-cycle of cloud SLAs, and pre-
sented the software architecture designed for the imple-
mentation of such process. In order to demonstrate the
feasibility of the whole solution, we also discussed a case
study related to a demonstrator application developed in the
context of an EU project we are involved in. Our approach is
perfectly in accordance with the automated, self-service, no-
user intervention principles that are among the foundations
of cloud computing.

ACKNOWLEDGMENT

This research is partially supported by the grant FP7-ICT-
2013-11-610795 (SPECS) and H2020-ICT-07-2014-644429
(MUSA).

REFERENCES

[1] European Commission – C-SIG (Cloud Select Industry
Group) subgroup, “Cloud Service Level Agreement Standard-
isation Guidelines,” June 26 2014.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web
services agreement specification (WS-Agreement),” in Global

Grid Forum. The Global Grid Forum (GGF), 2004.

[3] A. Keller and H. Ludwig, “The WSLA framework: Specifying
and monitoring service level agreements for web services,”
Journal of Network and Systems Management, vol. 11, no. 1,
pp. 57–81, 2003.

[4] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann,
U. Winkler, and G. Zacco, “A framework for multi-level SLA
management,” vol. 6275, pp. 187–196, 2010.

[5] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano,
“Security as a service using an SLA-based approach via
SPECS,” in Proc. of CloudCom, 2013 IEEE 5th Int. Conf.

on, vol. 2, Dec 2013, pp. 1–6.

[6] F. Faniyi and R. Bahsoon, “A systematic review of service
level management in the cloud,” ACM Comput. Surv., vol. 48,
no. 3, pp. 43:1–43:27, Dec. 2015.

[7] G. Di Modica, O. Tomarchio, and L. Vita, “Dynamic SLAs
management in service oriented environments,” J. Syst. Softw.,
vol. 82, no. 5, pp. 759–771, May 2009.

[8] A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito, M. Rak,
O. Tomarchio, S. Venticinque, and U. Villano, “An SLA-
based broker for cloud infrastructures,” Journal of Grid

Computing, vol. 11, no. 1, pp. 1–25, 2013.

[9] A. Dastjerdi and R. Buyya, “An autonomous reliability-aware
negotiation strategy for cloud computing environments,” in
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, May 2012, pp. 284–
291.

[10] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Man-
aging performance interference effects for qos-aware clouds,”
in Eurosys 2010. Association for Computing Machinery, Inc.,
April 2010.

[11] J. Sidhu and S. Singh, “Improved topsis method based
trust evaluation framework for determining trustworthiness of
cloud service providers,” Journal of Grid Computing, pp. 1–
25, 2016.

[12] L. Wu and R. Buyya, Performance and Dependability in Ser-

vice Computing: Concepts, Techniques and Research Direc-

tions. IGI Global, USA, 2011, ch. Service Level Agreement
(SLA) in Utility Computing Systems.

[13] N. Sfondrini, G. Motta, and L. You, “Service level agreement
(sla) in public cloud environments: A survey on the current
enterprises adoption,” in Information Science and Technology

(ICIST), 2015 5th International Conference on, April 2015,
pp. 181–185.

[14] NIST, “SP 800-53 Rev 4: Recommended Security and Privacy
Controls for Federal Information Systems and Organizations,”
National Institute of Standards and Technology, Tech. Rep.,
2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-53r4.pdf

[15] Cloud Security Alliance, “Cloud Control Matrix
v3.0,” https://cloudsecurityalliance.org/download/
cloud-controls-matrix-v3/.

[16] M. Rak, U. Villano, V. Casola, and A. De Benedictis, “Sla-
based secure cloud application development: the specs frame-
work,” in Symbolic and Numeric Algorithms for Scientific

Computing, 2015 17th International Symposium on, 2015.

[17] V. Casola, A. De Benedictis, M. Rak, J. Modic, and
M. Erascu, “Automatically enforcing security slas in the
cloud,” IEEE Transactions on Services Computing, vol. PP,
no. 99, pp. 1–1, 2016.

[18] A. De Benedictis, M. Rak, M. Turtur, and U. Villano, “Rest-
based sla management for cloud applications,” in Enabling

Technologies: Infrastructure for Collaborative Enterprises

(WETICE), 2015 IEEE 24th International Conference on,
June 2015, pp. 93–98.

[19] V. Casola, A. De Benedictis, and M. Rak, “Security monitor-
ing in the cloud: An SLA-based approach,” in Availability,

Reliability and Security (ARES), 2015 10th International

Conference on, Aug 2015, pp. 749–755.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3/

