
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.



MUSA Deployer: Deployment of Multi-cloud Applications

Valentina Casola⇤, Alessandra De Benedictis⇤, Massimiliano Rak†, Umberto Villano‡,
Erkuden Rios§, Angel Rego§, Giancarlo Capone¶

⇤ Università di Napoli Federico II, DIETI, Napoli, Italy
alessandra.debenedictis@unina.it, casolav@unina.it

† Università della Campania Luigi Vanvitelli, DIII, Aversa, Italy
massimiliano.rak@unina2.it

‡ Università del Sannio, DING, Benevento, Italy
villano@unisannio.it
‡ Technalia, Spain

erkuden.rios, angel.rego@technalia.es
‡ CeRICT, Benevento, Italy

gcapone@gmail.com

Abstract—The development of applications based on services
offered by different, not conscious, providers, is expected to be
growing in the next years. In order to offer effectively multi-
cloud applications, many challenges still need to be faced. At
this aim, the MUSA framework provides a DevOps approach to
develop multi-cloud applications with desired Security Service
Level Agreements (SLAs). This paper describes the MUSA De-
ployer models, which help developers to express their security
requirements, and a Deployer tool that automatically provides
cloud security services to offer Security SLAs.

Keywords-Cloud Security, Per-service SLA, Security Service
Level Agreement

I. INTRODUCTION

Cloud computing is one of the most successful computing
paradigms of the last decades. As pointed out by a recent
study of the statistical office of the European Union Eurostat
[1], 21% of EU enterprises used cloud computing in 2016.
The wide diffusion of cloud services, offering functionali-
ties related to different application domains and addressing
different computing and storage needs, opens up to the
possibility of building complex cloud-based applications
that rely upon heterogeneous services, possibly offered by
different cloud service providers (CSPs), to deliver value-
added services to end-users.

Multi-cloud applications are an example of such ap-
plications. According to the definition provided by [2],
multi-cloud applications combine resources from multiple
independent cloud providers without the need for an explicit
cooperation among involved CSPs. A different model is
represented by the cloud federations, where providers vol-
untarily interconnect their infrastructures to allow sharing
of resources. In both models, the software components of
the application may be deployed anywhere (i.e., on any
cloud provider), provided that functional and non-functional
requirements are satisfied. This flexibility not only enables
an efficient usage of existing resources, but also allows, in

some cases, to cope with specific requirements in terms of
security and performance. Common challenges related to
the deployment of multi-cloud applications include (i) the
identification of the cloud services (for the deployment of the
application components) that allow to meet the application
functional and non-functional requirements; (ii) the defini-
tion of guarantees on the fulfillment of existing regulations
and security policies upon setting-up the application; and
(iii) the support to the application consistent behavior (e.g.,
access to data) regardless of the components locations and
of the topology of their interconnection in order to support
potentially the migration of application components across
clouds, if required.

These challenges, among others, have been recently tack-
led by the MUSA project [3], [4], which aims at offering
a framework to support the developer of multi-cloud ap-
plications throughout their complete life-cycle. MUSA, in
particular, takes care of the security aspects of the multi-
cloud applications, identifying and trying to address the
risks that multi-cloud deployments might open, through a
security-by-design approach and by applying risk analysis
from the very early development stages.

In this paper, we focus on the deployment phase of a
multi-cloud application in MUSA. We describe a tool that,
starting from the high-level model defined according to the
MUSA flow, produces a concrete deployment plan (that
summarizes the software components to be installed and the
services to be acquired in order to satisfy given security
requirements) and automatically executes it, acquiring all
the needed cloud resources and deploying and suitably
configuring all the software components on such resources.

The remainder of the paper is structured as follows:
Section II provides a brief overview of the MUSA project
and of the proposed multi-cloud security-by-design devel-
opment process. Section III introduces our proposal for the
management of the deployment phase, which relies upon



a two-layer model for the representation of multi-cloud
applications. Sections III-A and III-B discuss this model
in detail, while Section IV illustrates the architecture of
the MUSA Deployer tool. Finally, Section V presents some
related work on deployment configuration and automatic
execution, and Section VI summarizes our conclusions.

II. THE MUSA FRAMEWORK

The MUSA framework, which is the main result of
the MUSA project, supports agile and DevOps-oriented
engineering of secure multi-cloud applications. The DevOps
approach promotes the continuous collaboration of the de-
velopment team with the testing team and the IT operations
specialists in order to improve the frequency and quality
of software release. The core idea of the MUSA solution
is to address the full application life-cycle, from design
and development up to runtime management and application
maintenance, with security as the key driver of the whole
process. A multi-cloud application life-cycle is managed by
MUSA through the flow shown in Figure 1.

During the first phase (Modelling), the DevOps team
models the application using a Cloud Provider Independent
Model (CPIM) of the multicloud application. Such phase,
carried out by the MUSA Modeler tool, relies on a specific
application modeling language (based on CAMEL [5]),
which allows to describe, at a high-level of abstraction,
both the application architecture and the deployment re-
quirements, independently of the specific providers that will
be actually used by the components. Then, in the Risk
Assessment phase, the DevOps team invokes the MUSA Risk
Assessment tool to carry out an early risk assessment process
in order to identify the security controls and the security
Service Level Objectives (SLOs) required by the multi-cloud
application components [6]. The subsequent phase (Cloud
Service Selection) entails the selection of the cloud services
to be used to implement and deploy the application compo-
nents. It is supported by the MUSA Decision Support Tool
(DST), which is responsible for identifying the combinations
of cloud services that best match the requirements specified
in the Modelling phase.

After the definition of the security requirements of the
application components and the selection of the list of cloud
services they will use, the DevOps team can generate the
Security Service Level Agreement (SLA) templates for the
components by means of the MUSA SLA Generator tool
(SLA Template Generation phase). The Security SLAs are
contracts that formally state the level of security offered by
a given provider or service [7], [8], and are modeled here as
a set of declarations about the security controls implemented
by the service [9] and the related guaranteed SLOs (Service
Level Objectives) . SLAs generated in this phase do not
contain yet formal guarantees about the security offered
by selected services, since the actual level of security may
depend on the mutual inter-dependencies among components

and services. For this reason, we talk about SLA templates.
SLA Templates generated in this phase are stored in the
SLA Repository. The Deployment phase is split into two
sub-phases, namely Deployment planning and Deployment
and Execution. In the Deployment planning sub-phase, the
deployment plan is generated, which includes the low-level
information needed to acquire the cloud services selected in
the Cloud Service Selection phase, and to configure them in
order to run the application components. Once the deploy-
ment plan has been generated, the MUSA Deployer shares
it with the MUSA SLA Generator, so that the latter can start
the Composite SLA Generation phase, which is responsible
for the automatic creation of the composite SLA for the
whole multi-cloud application. The composite SLA will
include the security guarantees associated with the multi-
cloud application. It is built by properly combining the SLA
templates of the application components (generated in the
SLA Template Generation phase) and the SLAs published by
involved providers, by taking into account the relationships
among the components and the underlying cloud services
and the impact that they may have on involved security
control families.

Finally, in the Deployment and Execution sub-phase, the
MUSA Deployer is used by the DevOps team to auto-
matically deploy the multi-cloud application components
by following the deployment plan. This step involves the
acquisition and configuration of the cloud services as well
as the installation of the application components software
artifacts to guarantee security SLAs. When the application
is up-and-running, the MUSA Security Assurance Platform
starts monitoring it, based on the final composite SLA and on
the deployment plan. If any violation of the SLA is detected,
a notification is sent to the DevOps team and a re-design
or re-deployment iteration of the multi-cloud application is
launched.

One of the key advantages of the MUSA framework is
that each of the tools used in the different phases of the
application life-cycle can be used independently of the others
and addresses specific needs. This paper, as anticipated,
will focus on the multi-cloud application modeling and
deployment, which involves the first, fifth and seventh steps
in the process described above.

III. MODELING A MULTI-CLOUD APPLICATION

As already mentioned, a multi-cloud application consists
of one or more software components that interact with one
another and need cloud resources for their implementation
and/or execution. In particular, application components use
SaaS (Software-as-a-Service) cloud services, are hosted by
IaaS (Infrastructure-as-a-Service) cloud services and/or use
PaaS (Platform-as-a-Service) cloud services offered by mul-
tiple CSPs.

In the flow presented in the previous section, the multi-
cloud application is described through incremental models.



Figure 1. The MUSA flow for the development and execution of secure multi-cloud applications

In particular, we adopt a two-layer modeling approach,
which entails the adoption of (i) a high-level model of the
application, based on the CAMEL language, which is refined
through the first four phases of the process to describe
both provider-independent and provider-specific aspects of
the application, and of (ii) a low-level description of the
application (deployment plan), which can be directly used
by the MUSA Deployer to carry out the deployment and
configuration tasks. These two models are discussed in
the following subsections before dealing with the MUSA
Deployer tool.

A. The high-level multi-cloud application model

The high-level model of a multi-cloud application used by
the MUSA flow is based on an extension of the CAMEL lan-
guage. CAMEL (Cloud Application Modelling and Execu-
tion Language) allows to specify through a human-readable
and structured text format the deployment of a cross-cloud
application (i.e., of an application that can be defined once,
and deployed at different providers seamlessly) along with
its requirements and objectives. In particular, with CAMEL
it is possible to specify the architecture of the application
(in terms of its components), the high-level deployment
model (in terms of the types of virtual machines to be used
for each component) and the installation and configuration
parameters for each component. Moreover, CAMEL allows
to manage the information about the credentials to be used
to access cloud services.

The first extension to the CAMEL language introduced by
MUSA involves the refinement of the security aspects related
to the credential management. In particular, we extended the
set of supported credential types, added expiration dates for
credentials, and introduced additional parameters to describe
user accounts as, for example, its Role and Security Level.
The second extension to CAMEL involves the introduction
of the explicit modeling of the communication protocols
used between two components. In fact, in CAMEL users
can only specify that two components are interconnected
and provide limited information (e.g., they can specify the
IP addresses and ports used by components in case of IP
communications), but they cannot specify the adoption of

a specific protocol. Moreover, we introduced the definition
of a set of dynamic features over communications, such as
context paths (instead of IP addresses) and dynamic port
ranges.

The third extension to CAMEL involves the improve-
ment of the management of the components’ life-cycle. In
CAMEL, users assign life-cycle handlers to components
that are responsible for installing, configuring, starting, and
stopping the components on virtual machines. This de-
ployment process is restricted to scripted commands, while
there is no support for more advanced frameworks such
as Cloudify [10], Puppet [11], or Chef [12]. In MUSA,
we filled the gap between multi-cloud application models
and existing configuration management tools by introducing
the Configuration entity, embedding the concepts needed to
interface with these tools (e.g., cookbooks and recipes, in
the case of Chef).

Finally, we added explicit support for the coverage of
security aspects. Indeed, as illustrated in the previous sec-
tion, during the Risk Assessment phase the DevOps team
identifies the security requirements (in terms of controls and
security SLOs) of each application component. MUSA offers
a set of enforcement agents that are able to fulfill the multi-
cloud application security policies at runtime, by enforcing
the needed security control in an as-a-service fashion. Such
agents are collected in a Catalogue and can be included in
the application model as any other component.

The MUSA framework offers a web-based user interface
to write CAMEL-based high-level multi-cloud application
models. It relies on the Xtext [13] technology and allows
end-users to edit and update remotely the multi-cloud ap-
plications models without any program installation and by
using any web browser.

B. The low-level multi-cloud application model

The deployment plan provides the application low-level
description, and can be directly translated into deployment
and configuration operations by the MUSA Deployer. It is
represented in JSON, and its schema is available in the
MUSA source repository [14]. It has a dedicated section for
each CSP involved in the multi-cloud application deploy-



ment and, for each CSP, it contains two sections, including
general infrastructure-related information and specific infor-
mation on the virtual machines to acquire, respectively. In
particular, the infrastructure section defines (i) the
Provider, i.e., the specific CSP, (ii) the Zone, i.e., the region
in which the resources can be acquired, (iii) the User needed
to access the resource in order to install and configure the
software components, and (if supported by the provider) (iv)
the Network in which the resources have to be configured.

The VM section includes the list of VMs that have to
be acquired with the information on whether they must be
assigned a public IP or not, and reports the list of software
components that have to be installed and configured on each
machine. VMs are identified by (i) a Sequence Number, (ii)
the installed Appliance (i.e., the identifier of the image of a
default operating system, or a custom image that can be
uploaded on the provider itself), and (iii) the underlying
Hardware (i.e., an identifier of a specific combination of
virtual CPU, RAM size and hard-disk size).

The components to be installed and executed on each
machine are specified by means of the associated Chef
cookbook and Chef recipes. Chef recipes allow to install and
configure automatically one or many software components
on a VM. Since the full multi-cloud deployment may need
a specific order of installation and configuration of the soft-
ware components, for each VM, the deployment plan defines
the ordering of installation by means of the implementation
step parameter.

Finally, for each VM, the plan specifies the inbound and
outbound access rules in terms of the network ports that have
to be opened, in order to allow or deny the communications
among the VMs and of the VMs with the Internet. In
particular, the deployment plan defines, for each VM, the
protocol (i.e. UDP, TCP, ICMP) and the ports that have to
be opened both as ingress rule and egress rule.

IV. MUSA DEPLOYER ARCHITECTURE

In this section, we illustrate the architecture of the MUSA
Deployer tool, responsible for the automation of the deploy-
ment of multi-cloud applications developed according to the
MUSA flow. In particular, the MUSA Deployer:

1) Prepares the deployment plan based on the applica-
tion’s high-level description;

2) Acquires the resources needed to run the ap-
plication according to what is reported in the
infrastructure and VM sections of the deploy-
ment plan;

3) Deploys and configures the application’s components
based on the recipes specified in the deployment plan
for each virtual machine;

4) Starts the cloud services and launches the application.
The deployment plan is implemented at this point.

The above operations are managed by three main architec-
tural components, namely the Deployer Core, the Planner

and the Broker (see Figure 2).
The Deployer Core orchestrates the Planner and the Bro-

ker components that are responsible for the deployment plan
preparation and implementation, respectively, and manages
the persistence of deployment plans. This component offers
the MUSA Deployer API, invoked by the MUSA front-end,
and in turn it invokes the Planner API and the Broker API
exposed by the other components.

The Planner is in charge of building the deployment plan
based on the high-level model generated by the MUSA
Modeller and on the SLA templates stored in the SLA
Repository and associated with the selected services. SLA
templates contain not only the information needed to invoke
such services but also the references to the enforcement
agents to be activated in order to cover specific security
requirements (if any). The deployment plan can be reviewed
and updated by the DevOps team through the MUSA front-
end. As shown in the figure, the Planner is connected also
to the SLA Generator tool: as discussed in Section II, the
deployment plan is shared by the Deployer with the SLA
Generator to launch the Composite SLA Generation phase.

The Broker component is invoked when the deployment
plan is ready. It automatically acquires the services from
external CSPs and deploys and configures the different cloud
components of the plan by relying upon the well-known
Chef technology. The Broker is composed of a Chef Server,
which stores the cookbooks for components installation and
configuration, and of a Resource Broker, which performs
the actual provisioning of the required virtual machines. In
particular, when the Resource Broker acquires a virtual
machine, it installs a Chef Client on it. Chef Clients are
responsible for the actual execution of the recipes taken from
the Chef Server on acquired resources, which enable the
deployment of the application components according to the
plan.

The MUSA brokering process may take from few minutes
up to an hour to start and setup completely a multi-cloud
application, depending on the software to be installed and
configured. When the deployment is completed, the MUSA
Security Assurance Platform is informed by the Deployer
Core about the components of the multi-cloud application
that have been deployed, and starts monitoring them.

V. RELATED WORK

According to [15], an ideal deployment service should
enable the automatic deployment of distributed applications,
handle the complex dependencies between the application
components, allow for the dynamic provisioning of the
required cloud resources, support multiple cloud providers
and enable the monitoring of the state of the deployment.
Although some interfaces supporting the provisioning of
IaaS cloud resources do exist, current CSPs still do not
provide customers with automated and standard provisioning
and deployment tools. Among the main initiatives for cloud



Figure 2. The MUSA Deployer UML component diagram

interoperability standardization, the Cloud Infrastructure
Management Interface (CIMI) by the Distributed Manage-
ment Task Force [16], [17] and the Open Cloud Computing
Interface (OCCI) by the Open Grid Forum [18] stand out.
The CIMI specification aims at standardizing the interac-
tions between cloud environments to achieve interoperable
cloud infrastructure management between service providers
and their consumers and developers. The IaaS resources
are modelled and made accessible via a RESTful HTTP-
based protocol, although the model can be mapped to other
protocols as well. CIMI supports resource representation in
JSON and XML formats, via standard HTTP content-type
negotiation. OCCI is a protocol and API for all kinds of
management tasks, and it was originally born to create a
remote management API for IaaS resources. The current
version allows managing also other cloud model resources,
e.g., PaaS and SaaS. OCCI allows the development of
interoperable tools for common tasks including deployment,
autonomic scaling and monitoring. The provided API is
intended to be used via HTTP, in a RESTful fashion.

Despite these standardization efforts, the actual de facto
standard for IaaS cloud resource acquisition is the Amazon
Machine Image (AMI) [19], i.e., the API offered by Amazon
AWS EC2, which is the API most adopted by cloud products
and/or providers. For what regards PaaS providers, some
of them provide target-dependent SDKs, which can work
integrated in an IDE (Integrated Development Environment)
and allow the application developers to deploy automatically
the application designed inside the IDE into the managed
cloud resources. However, this kind of deployment tools are
proprietary, and therefore limited in terms of interoperability
and of the number of cloud resources that they can handle.
They only can manage the resources provided by the CSP,
which is the owner of the automated deployment tool.

Examples of such tools are Google App Engine SDK and
Microsoft Azure SDK.

The SPECS broker [20], developed in the context of the
SPECS project [21], [22], [23], offers a flexible solution
to acquire resources from different CSPs, since it enables
to manage pools of VMs, execute scripts on clusters of
VMs and automatically register and configure software
components with an automated configuration management
toolkit. This tool, as well as the other mentioned solutions,
does not explicitly address the goal of dynamically config-
uring resources acquired concurrently on multiple CSPs, as
required in MUSA. The SPECS broker, however, enables
functionalities similar to the ones offered in MUSA, even
if it handles one CSP at a time. As a consequence, we
developed the MUSA Deployer on top of the SPECS broker,
adding the multi-cloud capabilities. It is worth noting that
the SPECS broker is open-source, and offers a public API,
built on top of a multi-cloud toolkit library, which enables
full control over all resources acquired, thus simplifying
the process of synchronizing multi-cloud resources. In the
context of MUSA, the deployment execution is manually
initiated by the DevOps Team that is using the framework
to develop and deploy all components of the application.
Therefore, it should allow working with single and multi-
cloud component deployments and re-deployments that may
affect only individual components. Besides, the separation
of the planning and the broker (provision) services allows
to have full control over the integration of the Deployer with
other MUSA tools.

VI. CONCLUSIONS

The development of multi-cloud applications is very
challenging and currently many open issues still need to
be faced. The MUSA framework aims at providing a



DevOps environment to easily develop new secure multi-
cloud applications, and provides support for their automated
deployment, made more complex by inevitable security re-
quirements. In this paper we described the MUSA Deployer
tool, which is responsible for preparing a deployment plan
and automatically configuring all the components of a multi-
cloud application on different CSPs.

In addition to illustrating the Deployer architecture, we
discussed the modelling approach adopted to enable the
whole MUSA flow, which entails the adoption of a high-
level model, obtained as an enhancement of the CAMEL
language and enabling to specify, at a high level of ab-
straction, the application architecture and its requirements,
and a low-level model (deployment plan), containing the
information needed to automatically acquire, install and
configure involved software components on cloud resources.

ACKNOWLEDGMENT

This research is partially supported by the grant FP7-ICT-
2013-11-610795 (SPECS) and H2020-ICT-07-2014-644429
(MUSA).

REFERENCES

[1] “Cloud computing - statistics on the use by enterprises,”
http://ec.europa.eu/eurostat/statistics-explained/index.php/
Cloud computing - statistics on the use by enterprises#
Use of cloud computing: highlights.

[2] Global Inter-Cloud Technology Forum, “Use Cases and
Functional Requirements for Inter-Cloud Computing. GICTF
White Paper,” http://www.gictf.jp/doc/GICTF Whitepaper
20100809.pdf, 2010.

[3] E. Rios, E. Iturbe, L. Orue-Echevarria, M. Rak, and V. Casola,
“Towards self-protective multi-cloud applications - MUSA - a
holistic framework to support the security-intelligent lifecycle
management of multi-cloud applications,” in CLOSER 2015 -
Proceedings of the 5th International Conference on Cloud
Computing and Services Science, Lisbon, Portugal, 20-22
May, 2015., 2015, pp. 551–558.

[4] MUSA Consortium, “The musa project web site,” http://
musa-project.eu/, 2015.

[5] “Cloud Application Modelling and Execution Language -
CAMEL,” http://camel-dsl.org/, 2017.

[6] V. Casola, A. De Benedictis, M. Rak, and E. Rios, “Security-
by-design in clouds: A security-sla driven methodology to
build secure cloud applications,” Procedia Computer Science,
vol. 97, pp. 53 – 62, 2016, 2nd International Conference on
Cloud Forward: From Distributed to Complete Computing.

[7] V. Casola, A. De Benedictis, J. Modic, M. Rak, and U. Vil-
lano, “Per-service security sla: a new model for security man-
agement in clouds,” in Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2016 IEEE 25th
International Conference on. IEEE, 2016, pp. 83–88.

[8] A. De Benedictis, V. Casola, M. Rak, and U. Villano, “Cloud
security: From per-provider to per-service security slas,” in
2016 International Conference on Intelligent Networking and
Collaborative Systems (INCoS), Sept 2016, pp. 469–474.

[9] V. Casola, A. De Benedictis, M.Rak, J. Modic, and M. Erascu,
“Automatically enforcing security slas in the cloud,” IEEE
Transactions on Services Computing (PrePrints), 2016.

[10] “Cloudify,” http://getcloudify.org/.

[11] “Puppet Labs,” http://puppetlabs.com/.

[12] “Chef,” https://www.chef.io/chef/.

[13] “X-text,” http://www.eclipse.org/Xtext/.

[14] “The MUSA Project Bitbucket repository,” https://bitbucket.
org/account/user/cerict/projects/MUSA.

[15] G. Juve and E. Deelman, “Automating application deployment
in infrastructure clouds,” in 2011 IEEE Third International
Conference on Cloud Computing Technology and Science,
Nov 2011, pp. 658–665.

[16] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg,
“Towards model-driven provisioning, deployment, monitor-
ing, and adaptation of multi-cloud systems,” in 2013 IEEE
Sixth International Conference on Cloud Computing, June
2013, pp. 887–894.

[17] “Cloud Infrastructure Management Interface. CIMI Stan-
dards,” http://dmtf.org/sites/default/files/standards/documents/
DSP0263 1.1.0.pdf.

[18] “Open Cloud Computing Interface. OCCI Standards,” http:
//occi-wg.org/.

[19] “Amazon Machine Image Documentation,” http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/AMIs.html.

[20] “SPECS Project. Secure Provisioning of Cloud Services based
on SLA management. FP7- ICT-2013.1.5, 2013-2016,” http:
//specs-project.eu/.

[21] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano,
“Security as a service using an SLA-based approach via
SPECS,” in Proc. of CloudCom, 2013 IEEE 5th Int. Conf.
on, vol. 2, Dec 2013, pp. 1–6.

[22] SPECS Consortium, “SPECS project web site.” [Online].
Available: http://www.specs-project.eu

[23] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Pre-
liminary design of a platform-as-a-service to provide security
in cloud,” in CLOSER 2014 - Proc. of the 4th Int. Conf. on
Cloud Computing and Services Science, Barcelona, Spain,
April 3-5, 2014., 2014, pp. 752–757.


