
Disclaimer

This copy is a preprint of the article self-produced by the authors for personal
archiviation. Use of this material is subject to the following copyright notice.

IEEE Copyright notice

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions /
IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.



Towards Automated Penetration Testing for Cloud Applications

Valentina Casola⇤, Alessandra De Benedictis⇤, Massimiliano Rak†, Umberto Villano‡,
⇤ Università di Napoli Federico II, DIETI, Napoli, Italy

alessandra.debenedictis@unina.it, casolav@unina.it
† Università della Campania Luigi Vanvitelli, DIII, Aversa, Italy

massimiliano.rak@unina2.it
‡ Università del Sannio, DING, Benevento, Italy

villano@unisannio.it

Abstract—The development of cloud applications raises

several security concerns due to the lack of control over

involved resources. Security testing is fundamental to iden-

tify the existing security issues and is particularly powerful

when carried out by means of penetration testing techniques.

Unfortunately, penetration testing requires a deep knowledge

of the possible attacks and of the available hacking tools

and is very energy demanding. In this paper, we present a

methodology that allows to easily carry out a coarse-grained

security evaluation of a cloud application by automating the

set-up and execution of penetration tests. The methodology

relies on the knowledge of the application architecture and on

the availability of a catalogue including security-related data

collected from multiple sources and properly correlated.

Keywords-Cloud Penetration Testing, Security Service Level

Agreement

I. INTRODUCTION

The development of cloud applications, relying on the
orchestration of services possibly distributed over multi-
ple Cloud Service Providers (CSPs), raises several issues,
especially in terms of security. Evaluating the security of
cloud applications is not easy at all, and also Security Ser-
vice Level Agreements (Security SLAs) from public CSPs
offer very few guarantees [?]. Recent results from some
European projects, such as SPECS (www.specs-project.eu),
MUSA (www.musa-project.eu) and SLA-Ready (www.sla-
ready.eu), promote the adoption of Security SLAs based
on security metrics and quantitative service level objectives
that allow both negotiation and monitoring by means of
suitable tools and systems [?]. Available monitoring systems,
however, are not effective in evaluating security. They are
mainly based on traditional network-like monitoring tools
with probes/agents and correlating back-end systems to
detect any anomaly. These systems may potentially monitor
security features at any level of the cloud infrastructure, but
their adoption may be limited by their intrusiveness in the
providers’ infrastructure, which may violate CSP policies.

Indeed, security testing is fundamental to identify the
threats and vulnerabilities affecting cloud applications and
to assess their level of security. Among existing security
testing techniques, penetration testing appears to be one of
the most relevant and powerful means to identify exposed

vulnerabilities of a generic system. Unfortunately, it is
a typically human-driven procedure that requires a deep
knowledge of the possible attacks to carry out and of the
hacking tools that can be used to launch the tests, and it is
not within everyone’s means.

These considerations led us to investigate the introduction
of automated procedures to generate and execute penetration
tests. In this paper, we present a penetration testing process
that allows to configure and launch automatically a testing
environment to obtain a coarse-grained evaluation of the
security level provided by a cloud application. On the
one hand, the proposed process leverages the adoption of
specific models, taking into account the features of the cloud
application to test and the possible risks it is subject to,
along with the relationships existing among the well-known
concepts of threat, attack, vulnerability and weakness. On
the other hand, it relies upon the configuration and usage of
existing security tools and systems, which is partly carried
out based on the above modelling activities.

The remainder of the paper is structured as follows: in
Section II, we introduce our penetration testing methodology
and discuss the main inputs to the automated penetration
process. In Sections III, IV and V, we describe in details
the three phases devised by the methodology, respectively
related to the preparation, scanning and execution of the
tests on the system. A running example is used throughout
the paper to better illustrate the activities carried out in each
of the above phases. In Section VI, some related work on
penetration testing is presented. Finally, in Section VII, we
draw our conclusions and discuss our plans for future work.

II. PENETRATION TESTING METHODOLOGY

The penetration testing methodology presented in this
paper enables to obtain a coarse-grained evaluation of the
exposed vulnerabilities and existing security risks of a cloud
application (referred to as the System under Test - SuT -
hereafter), by means of an automated process supporting
the set-up and execution of penetration tests starting from a
description of the application.

The whole process leverages a complex knowledge base
used to extract the information needed in all the phases of



the penetration testing set-up and execution. This knowledge
base is represented by a catalogue that brings together
threats, exploits, attacks, weaknesses and vulnerabilities de-
riving from multiple sources (both standard and not). We
started building the catalogue in the context of two recently
closed European projects, i.e., SPECS and MUSA, which
have investigated the management of the life-cycle of secure
cloud and multi-cloud applications, and we are still working
on its development. In the catalogue, threats, attacks, weak-
nesses and vulnerabilities are classified based on the type of
application components to which they relate: three compo-
nent types are currently considered, namely web application,
storage service, and identity provider system, which repre-
sent some of the most common logic building blocks of
complex applications. Threats listed in the catalogue belong
to multiple sources, including the OWASP Top 10 2017 clas-
sification (for web applications) and the RFC6819 - OAuth
2.0 Threat Model and Security Considerations document
(for authorization servers based on OAUTH). Vulnerabilities
are those listed in the Mitre Common Vulnerabilities and
Exposures (CVE) system (http://cve.mitre.org), while attacks
are built from well-known exploits and attack patterns.
Exploits are taken from the Metasploit Framework’s Ex-
ploit Database (https://www.rapid7.com/db/modules/), while
attack patterns are those classified by the Mitre Common
Attack Pattern Enumeration and Classification (CAPEC)
initiative (https://capec.mitre.org). The concept of weakness
has been highlighted by Mitre in its Common Weakness Enu-
meration (CWE) project (http://cwe.mitre.org). Weaknesses
are defined as “mistakes regardless of whether they occur in
implementation, design, or other phases of the software de-
velopment life-cycle” that may introduce vulnerabilities. The
catalogue currently lists CWE weaknesses plus additional
weaknesses that have been identified by analysing specific
design or implementation flaws affecting common types of
components, even referring to their role in the most common
communication protocols.

In the catalogue, threats and weaknesses are directly
mapped to attacks. In particular, threats are linked to the
attacks that realize them, while weaknesses are mapped to
the attacks that may be carried out to check whether they
actually lead to some vulnerability exposure. Vulnerabilities,
instead, are directly mapped to exploits. Providing a detailed
description of the data model behind our catalogue is out of
the scope of this paper, but the interested reader can refer
to the public deliverable D2.3 of the MUSA Project [?]
or to the paper [?] for further explanation. Moreover, the
data model is publicly available as an open source project
on BitBucket at the address https://bitbucket.org/cerict/sla-
model.

A. Penetration testing phases

Our penetration testing methodology devises three main
phases, namely Preparation, Scanning and PenTesting. As

Figure 1. The automated penetration testing process

sketched in Figure 1, each phase includes both model-based
activities and system-based activities. The former activities
require a modelling effort and are based on the catalogue
introduced in the previous section. They allow to obtain the
information needed to configure systems and tools that are
deployed and/or launched during system-based activities.

As clarified later, the methodology relies on the adoption
of a graph-based formalism that allows to describe the SuT
architecture in terms of its logical components and of their
interconnections, in addition to providing deployment infor-
mation. Based on the SuT model, during the Preparation
phase, the analysis of the existing threats and of the related
security risks is carried out as part of the model-based
activities, while system-based activities focus on the testing
environment configuration.
The Scanning phase is mainly devoted to identifying the
weaknesses and vulnerabilities affecting the SuT, in order
to verify whether existing threats can be actually exploited
and harm the system. In particular, model-based activities
focus on the weaknesses identification, while system-based
activities are devoted to detecting vulnerabilities.
Finally, the PenTesting phase consists in building and exe-
cuting suitable attacks aimed at exploiting the weaknesses
and vulnerabilities identified in the previous phase in order
to evaluate the level of security of the SuT.
As shown in Figure 1, each of the above described phases
is based on a continuous Reporting process, which allows
to log all the executed steps and generate reports.

B. SuT model

The proposed methodology assumes as an input a model
of the application under test, which will be used to drive
the above mentioned activities. In order to better illustrate
the whole process, let us consider a very simple application
that will be used as a running example in the remainder
of the paper. The example application is built by the
orchestration of two software components represented by
commercial-off-the-shelf (COTS) products, namely a web
application W running on top of the Apache Tomcat servlet
container, which uses a database (based on MySql) DB for
the management of persistent data. The subject interested
in performing the penetration test is the cloud application



Figure 2. An example application - MACM formalization

provider or developer that aims at evaluating the level of
security of the application before releasing it publicly. In
this case, a grey-box testing strategy is considered, which
assumes a partial knowledge of the internal structure of the
application and of its components, and the knowledge of the
protocols possibly used for component communications.

The application can be modelled by means of the Multi-
cloud Application Composition Model (MACM) formalism
introduced in [?], which allows to describe in a simple and
immediate way the logic components of a cloud application,
their mutual relationships and the information related to their
deployment and to their security properties. In MACM, com-
ponents are modelled as graph nodes of type SaaS service.
Other types of nodes considered by the formalism are the
IaaS service type, which models the infrastructure resources
(i.e., the VMs) used to deploy the components, and the CSP
type, which models the providers offering the VMs. The
relationships among these nodes are represented as directed
edges and belong to three categories. A CSP provides one
or more VMs. An IaaS service (i.e., a VM) hosts an SaaS
service. Any service, either IaaS or SaaS, uses an SaaS
service. Figure 2 reports the MACM representation of the
simple cloud application introduced above, where the web
application component W is hosted by a virtual machine VM1
offered by the provider CSP1, and the database component
DB is hosted by a virtual machine VM2 offered by the
provider CSP2. The W and DB nodes are annotated with the
name of the protocols used to communicate with them (i.e.,
HTTP and mysql, respectively) and with the related ports.
The VM nodes, instead, are annotated with their IP addresses,
both public and private (the latter are the IP addresses
assigned to the machines in the SuT internal private network,
used to set-up the testbed as explained later).

III. PREPARATION PHASE

As outlined before, Preparation model-based activities
aim at determining existing threats and at analysing the
security risks posed by such threats, while system-based
activities are devoted to configuring the testing environment.

Figure 3. The testing environment

A. Model-based Preparation phase: SuT risk analysis

The risk analysis process performed in the Preparation
phase has been illustrated in [?] and relies upon the cat-
alogue introduced in Section II. Starting from the SuT
model based on the MACM formalism discussed before,
an automated process is carried out that allows the user to
identify the main threats each component is subject to based
on its nature and its interactions with other components,
and to identify, classify and rank existing risks. Based on
the type of involved components and on the information
on how components are implemented and interact with one
another, the main existing threats are identified. Afterward,
the tester is guided through a risk classification process
based on the OWASP Risk Rating Methodology [?], which
allows to identify and rank the existing risks. According to
the priorities set by risk levels, a set of threats of interest is
selected as the result of the model-based Preparation phase.

Referring to the example application modelled in Figure
2 for instance, assuming that no information is available
on the internal behaviour of the SuT components, all the
threats associated to the web application component type are
selected for W, and all the threats associated with the storage
service component type are selected for DB. Moreover,
assuming equal risks for all the threats, these threats will be
considered all of interest for the SuT, and will thus represent
the outcome of the model-based activity.

B. System-based Preparation phase: Testbed configuration

The automation of the penetration testing process is en-
abled by the availability of a pre-configured testing environ-
ment that can be easily launched based on the information
extracted from the SuT model. The testing environment
consists of a virtualized environment composed of a pre-
configured network (VPN) connecting three virtual machines
that represent, respectively, the attacker machine, the scan-
ning machine and the terminal emulator machine.

The attacker machine is a virtual machine equipped with a



Kali Linux distribution. Kali Linux (https://www.kali.org/),
based on the Debian operating system, offers more than 600
penetration testing tools including the Metasploit Framework
(https://www.metasploit.com/) and is highly customizable,
thus representing a powerful security platform for profes-
sionals and practitioners. Metasploit is a penetration testing
platform that enables to find, exploit, and validate vulnera-
bilities and is the main tool used in our penetration testing
process to launch attacks against the SuT and verify its level
of protection.

The scanning machine is a virtual machine hosting a
vulnerability scanning tool. Here we consider the Open
Vulnerability Scanner Assessment System (OpenVAS) 1,
an open source project providing a framework for the
monitoring and management of vulnerabilities. In order
to perform vulnerability detection, OpenVAS carries out
specific tests that exploit the vulnerabilities to verify whether
they affect or not a system (in a penetration testing-like
fashion). Such tests can be configured and tuned, which
is very useful to manage different monitoring policies.
OpenVAS is a framework whose architecture consists of
three main components, namely the OpenVAS Scanner, the
OpenVAS Manager and the OpenVAS Client. The Scanner is
the component that performs the vulnerability tests (NVTs)
on the target machine, and it is configured and controlled
by the OpenVAS Manager. The Client instead provides an
interface to operate the Manager.The scanning machine of
our tesbed is configured with the three above components,
and the OpenVAS Client is launched automatically during
the Scanning phase.

Finally, the terminal emulator machine, which aims at re-
producing the common usage of the SuT, is a virtual machine
equipped with Gatling [?], a well-known stress tool born
for load and performance testing that allows to record user
interactions with applications and to build usage scenarios
that can be launched in simulation during the tests. Usage
scenarios are recorded during the system-based Preparation
phase, in order to enable their automated execution during
the PenTesting phase. Note that such scenarios will be used
mainly to test DoS attacks.

The virtual network among the above testing machines
is bridged over the physical network hosting the virtual
environment and can directly access the Internet and the
services publicly offered by the SuT. Moreover, a VPN
server is installed within the SuT internal network to enable
the connection between it and the testing machines. This
allows to simulate a physical connection between the two
systems and enables to perform the tests in conditions very
similar to those of the production environment. Figure 3
shows the network configuration of the testbed for our
running example: the testing machines are connected in a
pre-configured VPN, identified in the figure by the addresses

1http://www.openvas.org/

belonging to the class 192.168.10.1/24. At the same time,
they are connected with another VPN established within the
SuT network, where the VPN Server is deployed. Note that
the VPN Server is deployed and configured automatically
based on the information specified in SuT model regarding
the addresses used in the SuT internal network. As reported
in Figure 2, the VMs hosting the W and DB components
of our example application have been assigned private ad-
dresses belonging to the class 192.168.66.1/24, therefore the
VPN Server will be configured with an IP address belonging
to the same class.

At state of art, the testing environment runs on top of
VirtualBox, using a single physical machine, even if we are
currently working to port the solution onto an OpenStack
infrastructure, in order to offer it as-a-Service.

IV. SCANNING PHASE

The Scanning phase is devoted to identifying the weak-
nesses and vulnerabilities affecting the SuT According to
our approach, weaknesses are identified as part of the model-
based activities performed in the Scanning phase by access-
ing the catalogue introduced before. Vulnerabilities, instead,
are identified by carrying out a vulnerability scanning pro-
cess aided by existing scanning tools, and thus represent a
result of the system-based activities of the Scanning phase.

A. Model-based Scanning phase: Weakness identification

Weaknesses identification is straightforward since, as said
in Section II, the catalogue maps weaknesses to component
types. Hence, the weaknesses of interest for the SuT can be
easily identified by means of a set of selective queries over
the catalogue according to the component types involved in
the SuT.

Let us consider again the simple application introduced
in Section II-B and let us recall that W represents a web
application component adopting the HTTP protocol for
communication. One weakness reported in the catalogue and
associated with the web application component type regards
the lack of validation of the inputs passed by means of the
POST method. If no validation is performed by the web
server, in fact, the component may be subject to DoS attacks
carried out by simply posting big files. This weakness, along
with the others related to W and DB, is simply extracted
from the catalogue as a result of the model-based scanning
activities.

B. System-based Scanning phase: Vulnerability Scanning

While weaknesses are related to the application architec-
ture, vulnerabilities depend on the involved technological
stack and on the specific software used in the system. As
anticipated, in order to identify the known vulnerabilities, we
adopt the OpenVas tool, which is installed and configured on
the scanning machine of our testbed. As part of the system-
based activities of the Scanning phase then, we simply



launch OpenVAS and collect the reports of a full scan. In the
case of our running example, the tool highlights immediately
many of the common vulnerabilities affecting the adopted
software, mainly related to the presence of bugs in the used
version of Tomcat and of the hosting operating system.

V. PENTESTING PHASE

The PenTesting phase consists in building and executing
suitable attacks aimed at exploiting the weaknesses and
vulnerabilities identified in the previous phase. The attack
preparation is a model-based activity and consists in the
proper orchestration of the exploits and attacks reported in
the catalogue, while the test execution relies on the use of
the Metasploit tool deployed on the attacker machine of the
testbed.

A. Model-based PenTesting phase: Preparation of the at-
tacks

The result of the Scanning phase is represented by a list
of vulnerabilities and a list of weaknesses. Vulnerabilities
are listed in the report produced by OpenVAS, which can
be directly used to identify the exploit modules to launch in
Metasploit since the latter are directly mapped to standard
vulnerabilities in the catalogue. Once identified, the exploit
modules are usually configured manually, based on the
information on the concrete system deployment, including
for example the IP addresses of the target machines. Note
that, according to our approach, such information is already
available in the MACM representation of the SuT, which
makes it possible to configure the exploit modules auto-
matically. To summarize, the exploit modules are identified
automatically, based on the vulnerability reports produced in
the Scanning phase, and are also configured automatically,
based on the information provided by the SuT model.

For what regards weaknesses, as explained in Section
II, they are explicitly mapped to attacks in the catalogue.
Attacks are represented by sets of tasks (for now very
limited) in Metasploit: for each task, we currently provide
the ordered list of Metasploit modules to launch to perform
the attack. Even in this case, the information specified in the
MACM model of the SuT is used to automatically configure
the Metasploit modules.

Related to the weakness mentioned in the previous section
for our example application, i.e., the one related to the lack
of validation of HTTP POST input size, we associated to it a
specific DoS attack in the catalogue consisting in attempting
to upload a very big file to the web server interface by
means of the HTTP POST method. The attack is realized by
means of a task corresponding to a custom exploit module
developed for Metasploit, which is selected and added to the
list of tasks to launch in the execution phase. The module is
configured with the connection parameters extracted from
the SuT MACM representation and no further action is
required to enable its execution.

Figure 4. Number of active users in normal conditions

Figure 5. Number of active users under a DoS attack

B. System-based PenTesting phase: Execution of the attacks

The final result of the model-based activities is a list of
attacks, expressed in terms of ordered lists of Metasploit
modules to launch, whose configuration is defined according
to the MACM model. The system-based activities, then,
consist in simply executing the attacks in the pre-determined
order. After each attack, the system is cleared (reset) and a
new attack takes place. For each attack, our tools report the
success/failure of the attack itself.

Referred to our running example, Figure 4 shows the
number of active users registered in normal conditions
during a given time frame by the Gatling tool, as part of
the system-based Preparation phase. As expected, when the
PenTesting phase is executed, the number of active users
degrades due to the DoS attack mentioned before, as shown
in Figure 5.

VI. RELATED WORK

Penetration testing is an approach to security widely
studied in the literature [?]. The majority of available work
aims at discovering vulnerabilities at the network level and
mostly relies on procedures executed manually by a security
expert. As discussed in the paper, compared to existing
research, our approach to penetration testing focuses on the
application level and relies on an automated process.

Although with peculiar characteristics, the contribution in
the literature more similar to our proposal is Potassium [?],
where penetration testing is offered as-a-Service. The actual
application running on a cloud is automatically cloned by
migration techniques and penetration testing is performed on
the clone, and not on the production system. Other works
exploring the automation of the penetration testing process
are [?] and [?]. In particular, the latter paper proposes a



system (Nemesis) that queries a database of known vulner-
abilities and uses Metasploit to execute the tests. Another
paper proposing penetration test automation by scripting is
[?].

An approach similar to ours, in that it is based on the
use of a cloud as testing environment for applications,
is suggested in [?] and [?]. The problems linked to the
penetration testing of applications exploiting cloud elastic-
ity, an issue currently out of our scope, is considered in
[?], where applications are monitored in different scaling
up/down execution states.

VII. CONCLUSIONS

In this paper, we presented an automated penetration
testing process thought to obtain easily a coarse-grained
evaluation of the level of security of a cloud application.
The process leverages (i) the information on the system
under test (SuT) specified in a model based on the MACM
formalism and (ii) the information included in a catalogue
collecting threats, weaknesses, vulnerabilities, exploits and
attacks classified based on the type of affected component.
Our penetration testing methodology devises three phases,
namely Preparation, Scanning and PenTesting. Each phase
includes both model-based activities, relying on the informa-
tion provided by the catalogue, and system-based activities,
carried out by means of suitable tools. The testing environ-
ment is pre-configured and can be set-up and launched very
easily, and the tests are run automatically based on the risks
and security issues identified previously. We showed that,
compared to traditional approaches to penetration testing,
our process can be completely automated and is able to
cover a large set of vulnerabilities and weaknesses. As the
catalogue is fundamental to our approach, we are involved
in a continuous process aimed at collecting new information
and at correlating existing information. Related to this, we
are particularly interested in refining the attack preparation
strategy as our future plan, in order to improve the efficacy
of the approach.

ACKNOWLEDGMENT

This research is partially supported by the grant FP7-ICT-
2013-11-610795 (SPECS) and H2020-ICT-07-2014-644429
(MUSA).


